Самолет с вертикальным взлётом. Без пробега. Зачем России самолет с вертикальным взлетом и посадкой

30.09.2019

На протяжении долгих лет продолжаются разговоры о возможном строительстве нового российского авианосца, которые, впрочем, пока не привели к старту реальных работ. В контексте подобного развития флота также нередко обсуждается вопрос авиационной группы для перспективного корабля. Высказываются те или иные предложения, в том числе и самые смелые. К примеру, в прошлом неоднократно предлагалось возобновить работы по тематике самолетов вертикального взлета и посадки. Согласно некоторым заявлениям официальных лиц, такое предложение может быть реализовано в отдаленном будущем.

Настоящее и планы


На данный момент палубную авиацию военно-морского флота России нельзя назвать многочисленной. В распоряжении летчиков имеется всего несколько десятков истребителей Су-33 и МиГ-29К. Все эти машины предназначаются для взлета с палубы, оснащенной трамплином. Посадка осуществляется при помощи аэрофинишера. Такая группировка достаточна для комплектации единственного имеющегося авианесущего крейсера, но строительство новых авианосцев потребует заказать определенное количество дополнительных самолетов.

Як-141 в полете

В настоящее время российское военное ведомство изучает перспективы развития палубных истребителей, и уже формирует некоторые предварительные предложения. Так, любопытный вариант дальнейшего развития морской авиации был предложен в прошлом году. Во время международного аэрокосмического салона МАКС-2017 заместитель министра обороны России Юрий Борисов затронул тему отдаленного будущего авиации флота. Как оказалось, Минобороны имеет весьма любопытные планы.

По словам Ю. Борисова, имеющиеся самолеты Су-33 и МиГ-29К постепенно будут морально устаревать, вследствие чего примерно через 10 лет потребуется разработка новых летательных аппаратов. При этом военное ведомство уже имеет планы на этот счет. Они предусматривают разработку и выпуск новых самолетов с укороченным или вертикальным взлетом и посадкой. Предполагается, что новые самолеты вертикального взлета станут своеобразным продолжением линейки подобной техники, в прошлом разрабатывавшейся в ОКБ А.С. Яковлева.

Замминистра обороны указал, что перспективные самолеты будут служить уже на новом авианосце, строительство которого может начаться в середине двадцатых годов. Иные подробности гипотетического проекта из будущего пока не оглашались. По всей видимости, разработка нового самолета еще не начиналась, а специалисты военного ведомства и авиационной промышленности пока и сами не знают, каким может быть новый российский палубный самолет.

Успехи прошлого

Прошлогодние заявления представителя Минобороны не раскрывают никаких подробностей, но дают интересный намек на возможное дальнейшее развитие событий. По словам Ю. Борисова, новый палубный истребитель станет продолжением семейства машин ОКБ Яковлева. Если для реализации будет выбрано именно такое предложение, то самолет из будущего может оказаться похожим на некоторые хорошо известные разработки. Это позволяет делать прогнозы и пытаться предугадать, какой будет новая техника.

Напомним, ОКБ Яковлева начало изучать тематику вертикального взлета еще в конце пятидесятых годов. К середине следующего десятилетия был создан экспериментальный проект Як-36. Опытные образцы этого типа показали основные особенности техники нового класса и позволили приступить к разработке полноценных боевых машин. На основе наработок по Як-36 был создан палубный штурмовик Як-38. Он имел встроенное вооружение, а также мог нести ракеты и бомбы. В конце семидесятых годов Як-38 был принят на вооружение и вошел в состав авиационных групп ряда кораблей ВМФ СССР. Также были разработаны несколько проектов модернизации такой машины.

Не дожидаясь завершения испытаний Як-38, конструкторское бюро приступило к разработке нового самолета со схожими взлетно-посадочными характеристиками, но с расширенными боевыми возможностями. Новый Як-41 (позже проект переименован в Як-141) должен был стать многоцелевым истребителем, способным завоевывать превосходство в воздухе, а также наносить удары по наземным или надводным целям. В рамках проекта конструкторам нескольких организаций предстояло решить большое число достаточно сложных задач, что привело к определенному затягиванию работ. Подготовка к испытаниям опытной техники стартовала только спустя десятилетие после начала проектирования.

Первый полет одного из опытных Як-41 состоялся в марте 1987 года. В течение нескольких следующих лет прототипы выполняли те или иные полетные программы, что позволяло проверить работу всех бортовых систем. В самом конце 1989 года состоялся первый полет с висением, а в июне 1990-го – первый вертикальный взлет и вертикальная посадка. После новых полетов с сухопутного аэродрома были начаты проверки на палубе. В конце сентября 1991 года состоялась первая посадка Як-141 на авианосец. Через несколько дней выполнили и взлет.

В начале октября во время очередной тестовой вертикальной посадки один из опытных самолетов превысил вертикальную скорость, что привело к разрушению конструкции и пожару. Этот инцидент стал фатальным для проекта. Возможность строительства нового опытного образца взамен утраченного отсутствовала, а вскоре было принято решение о закрытии проекта. Официально работы прекратились в 1992 году. Оставшиеся Як-141 все еще показывали на различных выставках, но эти машины более не имели будущего.

Один из вариантов облика Як-201

Экономические проблемы и специфические взгляды на военно-политические вопросы привели к тому, что Россия в начале девяностых годов отказалась от создания новых самолетов вертикального / укороченного взлета и посадки. Тем не менее, ОКБ Яковлева не прекратило проработку многообещающих идей и продолжило работы в инициативном порядке. В середине девяностых годов был предложен новый проект многоцелевого палубного истребителя Як-201.

По известным данным, проект Як-201 предусматривал строительство планера, выполненного с использованием стелс-технологий, что позволяло резко снизить заметность самолета в полете. Машину планировалось оснастить одним двигателем, предназначенным для вертикального взлета / посадки и горизонтального полета. Взлетать предлагалось за счет изменения тяги при помощи поворотного сопла. Поскольку двигатель помещался в хвосте машины, его должна была дополнять вспомогательная подъемная система. Среди прочего, прорабатывался вариант монтажа в носовой части фюзеляжа дополнительного ротора, приводимого в движение удлиненным валом двигателя.

Конкретный двигатель для Як-201 так и не был выбран, из-за чего большая часть летно-технических данных не была точно рассчитана. Самолет должен был получить автоматическую пушку и внутренние грузоотсеки для ракет или бомб. Сбрасываемое предлагалось перевозить на четырех точках подвески. Возможно, истребитель мог бы получить и пилоны внешнего размещения.

По очевидным причинам, проект Як-201 так и не вышел из стадии предварительной проработки. Потенциальный заказчик не проявлял интереса к такой технике, а кроме того, не имел финансовой возможности заказать ее разработку и строительство. Как следствие, очередное многообещающее предложение отправилось в архив.

Согласно заявлениям Ю. Борисова, имеющийся парк палубных самолетов в отдаленном будущем устареет, и им потребуется замена. В настоящее время рассматривается возможность создания самолетов вертикального / укороченного взлета и посадки, что может дать определенные преимущества. При этом пока не уточняется, какими они будут и какие возможности получат. Впрочем, указано, что военное ведомство намерено продолжить развитие старых идей ОКБ А.С. Яковлева. Таким образом, можно попробовать представить, как будет выглядеть перспективный палубный истребитель.

Взгляд в будущее

Из всех проектов самолетов вертикального взлета под маркой «Як» наибольший интерес может представлять самый последний, предложенный в середине девяностых годов и не дошедший до полноценных конструкторских работ. Прорабатывая облик машины будущего, ОКБ Яковлева предложило весьма интересный летательный аппарат, который и сейчас выглядит вполне современным. Те или иные составляющие этого проекта могут потребовать заметной переработки в соответствии с актуальными тенденциями, но ряд общих черт можно сохранить.

Следует отметить, что ряд основных черт проекта Як-201 заставляет вспомнить об американском истребителе Lockheed Martin F-35B Lightning II, имеющем возможность укороченного взлета и посадки. Российский и американский проекты предусматривали снижение заметности для средств обнаружения противника, использовали комбинацию маршевого двигателя с поворотным соплом и подъемного ротора, а также предлагали внутреннее размещение всего вооружения. Как показывает текущее положение дел с американскими самолетами, подобный вариант технического облика техники оправдывает себя и пригоден для решения поставленных задач. При этом нельзя не отметить, что получение желаемых результатов в рамках американского проекта было связано с множеством технических трудностей, затягиванием работ и ростом стоимости программы.

Поскольку Як-201 разрабатывался в девяностых годах, а проектирование нового аналогичного самолета стартует не ранее начала двадцатых, прямое заимствование тех или иных конструкторских решений фактически исключается. Одним из главных отличий нового проекта должно стать широчайшее применение современных материалов и технологий, созданных уже после отказа от эскизного проекта Як-201. Такой же подход следует применить и при создании бортового комплекса радиоэлектронного оборудования.


Музейный Як-141

Очевидно, что планер перспективного самолета должен строиться с учетом снижения заметности. Вполне возможно, что оптимальная его конфигурация будет похожа на планер истребителя пятого поколения Су-57. Впрочем, в любом случае будут присутствовать самые серьезные отличия. По известным данным, еще в рамках проекта Як-201 было проработано несколько версий аэродинамического облика малозаметной машины. В частности, изучалось переднее и заднее размещение горизонтального оперения.

Из всех известных вариантов силовых установок, обеспечивающих вертикальный или укороченный взлет, наиболее выгодной выглядит предложенная в проекте Як-201 и реализованная на самолете F-35B. Основной маршевый двигатель, показывающий достаточные характеристики, должен иметь поворотное сопло. При этом его вал следует связать с передним ротором, отвечающим за создание тяги под носовой частью планера. Также машина нуждается в газоструйных средствах управления по трем осям на вертикальном режиме и при переходе к горизонтальному полету.

Текущий прогресс в области радиоэлектронных систем позволяет смотреть в будущее с оптимизмом. На борту перспективного самолета может появиться РЛС с фазированной антенной решеткой, в том числе активной, оптико-локационные средства обнаружения и современный прицельно-навигационный комплекс. В соответствии с актуальными требованиями, авионика должна иметь полную совместимость с имеющимися и перспективными войсковыми средствами связи и управления.

Состав вооружения будет определен в соответствии с пожеланиями военных и предполагаемыми боевыми задачами. Отечественные самолеты вертикального взлета и посадки оснащались встроенной 30-мм автоматической пушкой и могли нести разнообразные авиационные средства поражения. Так, в проекте Як-141 предусматривалось применение различных ракет класса «воздух-воздух», в том числе изделий средней дальности. Для поражения наземных или надводных целей предлагался широкий круг управляемых и неуправляемых ракет и бомб. Такие же возможности могут перейти и к перспективному самолету. При этом важнейшей его чертой станет наличие внутренних грузоотсеков для оружия, позволяющих снизить заметность в полете.

Как следует из известных данных, пока российское министерство обороны лишь рассматривает возможность возобновления разработки и строительства самолетов вертикального взлета. Подобные предложения смогут превратиться в реальные проекты только через несколько лет, и затем определенное время потребуется для проведения всех необходимых работ. В итоге готовые палубные самолеты появятся не ранее второй половины двадцатых годов. К этому времени предполагается начать строительство нового авианосца, на котором предстоит служить новой авиационной технике.

Разработка нового самолета для авиации ВМФ России, по всей видимости, еще не начиналась, и это обстоятельство является прекрасным поводом для составления прогнозов и высказывания различных версий. Тем временем, специалисты военного ведомства и авиационной промышленности могут оценить перспективы существующего предложения и решить, что делать дальше. Если флоту действительно необходим самолет с необычными взлетно-посадочными характеристиками, то его разработка начнется уже в ближайшем будущем.

По материалам сайтов:
http://rg.ru/
https://ria.ru/
http://tass.ru/
http://airwar.ru/
http://yak.ru/
http://avia.pro/

МОСКВА, 15 дек — РИА Новости, Вадим Саранов. Одна из самых дорогих "игрушек" Пентагона — истребитель-бомбардировщик F-35B — на этой неделе принял участие в совместных американо-японских учениях, направленных на охлаждение ракетно-ядерного пыла КНДР. Несмотря на волну критики примененной в самолете концепции вертикального взлета, о необходимости возобновления производства машин такого класса в последнее время все чаще говорят и в России. В частности, о планах строительства самолетов с вертикальным взлетом и посадкой (СВВП) недавно сообщил замминистра обороны Юрий Борисов. О том, зачем России нужен такой самолет и хватит ли у авиапрома сил для его создания, — в материале РИА Новости.

Самым массовым отечественным боевым самолетом с вертикальным взлетом и посадкой стал Як-38, который приняли на вооружение в августе 1977 года. Машина заслужила неоднозначную репутацию среди авиаторов — из 231 построенного борта в катастрофах и авиационных инцидентах разбилось 49.

В ГД рассказали о судьбе группировки ВМФ у берегов Сирии после вывода войск По словам представителя парламентской группы по Сирии Дмитрия Белика, состав группировки не изменится, сейчас в нее входит более 10 кораблей и судов, в том числе вооруженных "Калибрами".

Основным эксплуатантом самолета стал Военно-морской флот — Як-38 базировались на авианесущих крейсерах проекта 1143 "Киев", "Минск", "Новороссийск" и "Баку". Как вспоминают ветераны палубной авиации, высокая аварийность вынуждала командование резко сокращать количество учебных полетов, а налет пилотов Як-38 составлял символическую по тем временам цифру — не более 40 часов в год. В итоге в полках морской авиации не было ни одного летчика первого класса, лишь единицы обладали вторым классом летной квалификации.

Боевые характеристики тоже были сомнительными — из-за отсутствия бортовой радиолокационной станции он лишь условно мог вести воздушные бои. Использование Як-38 в качестве чистого штурмовика выглядело неэффективным, поскольку боевой радиус при вертикальном взлете составлял всего 195 километров, а в жарком климате — и того меньше.

На замену "трудному ребенку" должна была прийти более совершенная машина Як-141, однако после развала СССР интерес к ней пропал. Как видно, отечественный опыт создания и эксплуатации СВВП не назовешь удачным. Почему же тема самолетов вертикального взлета и посадки стала вновь актуальной?

Флотский характер

"Такая машина жизненно необходима не только Военно-морскому флоту, но и Военно-воздушным силам, — рассказал РИА Новости военный эксперт, капитан первого ранга Константин Сивков. — Главная проблема современной авиации заключается в том, что реактивному истребителю нужна хорошая взлетно-посадочная полоса, а таких аэродромов очень немного, уничтожить их первым ударом довольно просто. Самолеты же вертикального взлета в угрожаемый период можно рассредоточить хоть по лесным полянам. Такая система применения боевой авиации будет обладать исключительной боевой устойчивостью".

Впрочем, целесообразность использования СВВП в сухопутном варианте не всем видится обоснованной. Одна из главных проблем заключается в том, что при вертикальном взлете самолет расходует много топлива, что сильно ограничивает его боевой радиус. Россия же — страна большая, поэтому для достижения господства в воздухе у истребительной авиации должны быть "длинные руки".

"Выполнение боевых задач истребительной авиации в условиях частично разрушенной аэродромной инфраструктуры можно обеспечить за счет укороченного взлета обычных машин с участка полосы длиной менее 500 метров, — считает исполнительный директор агентства "Авиапорт" Олег Пантелеев. — Другой вопрос, что у России есть планы на строительство авианосного флота, здесь применение вертикально взлетающих самолетов будет наиболее рационально. Это необязательно могут быть авианосцы, это могут быть и авианесущие крейсеры с наименьшими стоимостными параметрами".


К слову, F-35B сегодня является сугубо морской машиной, главный ее заказчик — корпус морской пехоты США (самолет будет базироваться на десантных кораблях). Британские F-35B составят основу авиакрыла новейшего авианосца Queen Elizabeth, который ввели в строй совсем недавно.

В то же время, по мнению Константина Сивкова, для начала работ по созданию российского аналога F-35B российским КБ не обязательно дожидаться новых авианосных кораблей. "Самолеты с вертикальным взлетом и посадкой могут базироваться не только на авианосцах. Например, танкер оборудуется рампой и становится своего рода авианосцем, в советское время у нас были такие проекты. Кроме того, СВВП могут использоваться с боевых кораблей, способных принимать вертолеты, например с фрегатов", — рассказал наш собеседник.

Сможем, если захотим

Между тем очевидно, что создание российского вертикально взлетающего самолета потребует внушительных ресурсов и средств. Стоимость разработки F-35B и его собратьев с горизонтальным взлетом, по различным оценкам, уже достигла 1,3 триллиона долларов, а в создании машины участвовали сразу несколько государств.

Как считают эксперты, для производства машины, сопоставимой по характеристикам с F-35B, понадобится решить ряд серьезных задач: миниатюризация авионики, создание нового поколения бортовых систем и проектирование планера с особыми характеристиками. Возможности для этого у российского авиапрома есть, тем более что многие системы можно унифицировать с самолетом пятого поколения Су-57. При этом одним из самых трудозатратных узлов может стать двигатель машины.

"Разработчик двигателя для Як-38 прекратил свое существование. Если какая-либо документация по поворотному соплу, в том числе и форсажному, наверняка еще сохранилась, то людей с практическим опытом создания таких узлов и агрегатов, скорее всего, уже не найти. Здесь у нас, вероятно, утеряны компетенции, — считает Олег Пантелеев. — В целом же, полагаю, что авиационная промышленность сможет дать достойный ответ в виде дееспособного проекта СВВП, если заказчик в лице Минобороны примет решение по авианесущему флоту и его авиационной составляющей".

Россия сможет приступить к созданию авианосцев в обозримой перспективе. Как заявляют в Минобороны, в 2025-2030 годах ожидается закладка тяжелого авианосца проекта 23000 "Шторм". К этому времени ВМФ России намерен получить два новых универсальных десантных корабля "Прибой", способных нести самолеты с вертикальным взлетом и посадкой.

Самолёт-амфибия вертикального взлёта и посадки ВВА-14

Странная конструкция на фото? А это как раз он и есть, вернее то, что от него осталось.
С середины 1950-х годов в СССР начался процесс формирования противолодочной авиации — нового рода сил, предназначенного специально для действий против подводных лодок. Авиация ВМФ и раньше решала подобные задачи, но в связи с созданием в США атомных субмарин борьба с угрозой из глубины моря вышла на первый план. Атомные энергетические установки коренным образом изменили условия и характер вооруженной борьбы на море. Подводные лодки стали подводными в полном смысле слова. Применение атомной энергетики открыло практически неограниченные возможности увеличения дальности плавания полным подводным ходом. Новые дальноходные самонаводящиеся торпеды и баллистические ракеты неизмеримо повысили ударные возможности атомных ПЛ, которые теперь во многом стали определять мощь флота.

С выходом на боевое патрулирование в начале 60-х годов американских атомных ПЛ, вооруженных баллистическими ракетами «Поларис», СССР оказался практически беззащитен. Лодки в подводном положении подходили к нашему побережью, могли в любой момент произвести ракетный залп, нанести колоссальные разрушения и уйти неуязвимыми. Все это требовало немедленного и эффективного ответа. Борьба с атомными ПЛ с целью предотвращения ракетно-ядерных ударов становится одной из приоритетных задач поставленных перед ВМФ. В этой связи резко повышается роль и значение авиации ПЛО, способной осуществлять эффективную борьбу с подводными лодками противника.
«Большое противолодочное направление» в развитии отечественного ВМФ позволило осуществить попытку реализовать в металле такой революционный и уникальный летательный аппарат как амфибию вертикального взлета и посадки ВВА-14.


ВВА-14 должен был стать частью авиационного противолодочного комплекса состоящего из собственно самолета, поисково-прицельной системы «Буревестник», противолодочного оружия и системы заправки топливом на плаву. Комплекс предназначался для обнаружения и уничтожения подводных лодок противника находящихся в районах удаленных от места вылета на 1200-1500 км, как самостоятельно, так и во взаимодействии с другими силами и средствами ВМФ.

ВВА-14 мог бы применятся в поисково-ударном, поисковом и ударном вариантах. Следовало спроектировать и построить три экземпляра машины с началом заводских испытаний первого в последнем квартале 1968 г.

Своего опытного производства КБ Бартини не имело, поэтому постройку ВВА-14 планировалось вести на опытном заводе ╧938 ОКБ Н.И. Камова. Но поскольку камовцы не располагали специалистами, знакомыми со спецификой тяжелого самолетостроения, в 1968 г. Р.Л. Бартини становится главным конструктором по теме ВВА-14 вновь создаваемого ОКБ при таганрогском заводе ╧86. Заместителем Бартини назначается В.И. Бирюлин.

Одновременно вышло решение комиссии президиума СМ СССР по военно-промышленным вопросам ╧305 от 20 ноября 1968 г. и приказ МАП ╧422 от 25 декабря 1968 г. о разработке технического проекта самолета ВВА-14 на Таганрогском машиностроительном заводе.


Поставленная задача оказалась слишком сложна для нового ОКБ и в 1970 г. принимается решение при помощи ОКБ А.К. Константинова разработать конструкторскую документацию и создать опытные образцы вертикально взлетающих аппаратов. Р.Л. Бартини стал Главным конструктором по теме ВВА-14, ведущим конструктором по амфибии стал Н.Д. Леонов, по оборудованию Ю.А. Бондарев.

Фактически работами по созданию ВВА-14 руководил заместитель главного конструктора Н.А. Погорелов, сменивший В.И. Бирюлина, т.к. Р.Л. Бартини жил в Москве и в Таганроге бывал наездами.

ВВА-14 представлял собой целое собрание необычных технических решений, каждое из которых требовало проведения большого объема опытно-конструкторских работ ещё до начала летных испытаний. С целью натурных отработок самолетных систем и элементов конструкции были спроектированы и построены несколько соответствующих стендов.

Для отработки силовой установки на малом понтонном стенде построенном на Ухтомском вертолетном заводе (УВЗ), были проведены экспериментальные работы по изучению впадины и брызгового факела образующихся при воздействии на водную поверхность струи газов ТРД ТС-12М.

Для изучения режимов взлета и посадки ВВА-14 на различные поверхности на УВЗ был создан плавучий газодинамический стенд-аналог 1410, позволявший проводить испытания модели самолета в масштабе 1:4, оборудованной шестью ТРД ТС-12М имитировавших работу всех подъемных двигателей самолета.

Стенд 1410 был перевезен на испытательно-экспериментальную базу ОКБ в г. Геленджике где прошел полный цикл испытаний для изучения режимов взлета и посадки самолета на водную поверхность. Полученные результаты свидетельствовали, в частности, что силы и моменты воздействовавшие на самолет при вертикальном взлете и посадке, были незначительны и система стабилизации и управления самолетом вполне могла их парировать. Комбинированные газоструйные рули для управления по курсу и тангажу были также отработаны на наземном стенде. Для отработки управления ВВА-14, были созданы два пилотажных стенда: с подвижной и неподвижной кабинами.На пилотажных стендах были ещё до первого полета досконально отработаны режимы управления самолетом, среди которых был режим приземления в условиях создания интенсивной динамической воздушной подушки. На стенды часто приглашали летчика-испытателя Ю.М. Куприянова, который высоко оценил работу их создателей, сказав на разборе первого полета: «Летали так, как на тренажере!»

Планировалось построить три опытных ВВА-14. В производство запустили одновременно два экземпляра самолета, машины «1М» и «2М».Первый опытный самолет «1М» был выполнен без подъемных двигателей и предназначался для отработки и доводки аэродинамики и конструкции на всех режимах полета, кроме вертикального взлета и посадки, исследования устойчивости и управляемости на этих режимах, для отработки маршевой силовой установки и самолетных систем. Для обеспечения взлета и посадки с аэродрома, на самолете устанавливалось шасси велосипедной схемы с управляемыми носовыми колесами (в конструкции шасси использовались стойки от бомбардировщиков 3М и Ту-22).




Вторая опытная машина «2М» должна была получить подъемные двигатели. На ней должны были изучаться и отрабатываться переходные режимы и режимы вертикального взлета и посадки с земли и воды, подъемная силовая установка, системы струйного управления, автоматики и другие системы, связанные с вертикальным взлетом и посадкой.После отработки основных технических вопросов на «1М» и «2М» наступала очередь третьего экземпляра ВВА-14. На нем должны были быть испытаны комплексы специального оборудования и вооружения, а также отработанно боевое применение.Изготовлялись самолеты в кооперации между опытным производством ОКБ (директор завода А. Самоделков) и соседним серийным заводом (Таганрогский механический завод им. Г. Димитрова, директор С. Головин).На серийном заводе изготавливали фюзеляж, консоли крыла и оперение, а сборка, монтаж самолетных систем и контрольно-записывающей аппаратуры была за опытным производством ОКБ.

К лету 1972 г. основные работы по сборке самолета ВВА-14 («1М») были закончены и машина покинувшая сборочный цех была передана ЛИКу для окончательной доводки перед летными испытаниями.ВВА-14 имел очень необычный вид. Фюзеляж с кабиной пилотов переходил в центроплан, по бокам которого располагались два огромных отсека с поплавками и системой их наддува. Разнесенное стреловидное горизонтальное и вертикальное оперение. Отъемные части крыла крепились к кессону центроплана. За оригинальность конструкции самолет получил кличку «Фантомас».Ведущим инженером по испытаниям стал И.К. Винокуров, летчиком-испытателем Ю.М. Куприянов, штурманом-испытателем Л.Ф. Кузнецов.

Стоянка, на которой расположили ВВА-14, располагалась на краю летного поля у небольшой рощи, т.н. «карантина», а в целях конспирации «1М» получил гражданскую регистрацию СССР-19172 и символику «Аэрофлота» на борту.В период с 12 по 14 июля 1972 г. начались первые рулежки и пробежки самолета по грунтовой ВПП заводского аэродрома. Затем от ВВА-14 отстыковали консоли крыла и хвостовое оперение и соблюдая все положенные меры секретности, в одну из ночей перевезли на соседний таганрогский аэродром, имевший бетонную полосу, на котором базировался один из учебных полков Ейского военного училища летчиков.Там, с 10 по 12 августа, пробежки продолжились. Их результаты были обнадеживающими, ВВА-14 на пробежках до скорости 230 км/ч вел себя нормально, силовая установка и бортовое оборудование работали без замечаний. В своем отчете летчик-испытатель Ю.М. Куприянов отметил, что: «На разбеге, подлете и пробеге самолет устойчив, управляем, ухода с курса взлета и кренений нет». Кроме того, обращено внимание на хороший обзор из пилотской кабины и удобное расположение пилотажно-навигационных приборов и приборов контроля за силовой установкой.

Первый раз в воздух ВВА-14 поднялся 4 сентября 1972 г. с экипажем в составе летчика-испытателя Ю.М. Куприянова и штурмана-испытателя Л.Ф. Кузнецова. Полет, продолжавшийся почти час, показал, что устойчивость и управляемость машины в воздухе в пределах нормы и ничуть не хуже, чем у традиционных самолетов.Как и на земле, в воздухе ВВА-14 выглядел очень необычно, получив за свою «трехголовость» при виде снизу (центральный нос-фюзеляж и два бортовых отсека) ещё одну кличку — «Змей Горыныч». К отдельным полетам в качестве самолета сопровождения и самолета-эталона для калибровки пилотажно-навигационного оборудования привлекался Бе-30 (╧05 «ОС»).Летные испытания первого этапа завершились к лету 1973 г. Их результаты подтвердили, что оригинальная аэродинамическая схема с крылом-центропланом вполне жизнеспособна, а маршевая силовая установка и основные системы работают надежно и обеспечивают выполнение испытательных полетов.Но самым значимым итогом этого этапа летных испытаний стало то, что под самолетом при полете вблизи земли толщина динамической воздушной подушки оказалась значительно больше по отношению к средней аэродинамической хорде крыла, чем это считалась ранее. При средней аэродинамической хорде ВВА-14 в 10,75 м эффект динамической подушки ощущался с высоты 10-12 м, а на высоте выравнивания (около 8 м) подушка была уже так плотна и устойчива, что Ю.М. Куприянов на разборах полетов много раз просил разрешения бросить ручку управления и дать машине сесть самой. Провести такой эксперимент ему, правда, так и не дали, опасаясь, что может просто не хватить взлетной полосы.

Единственным серьезным инцидентом был отказ гидросистемы ╧1 в первом полете. Причиной стало разрушение трубки отвода рабочей жидкости от насосов, из-за совпадения колебаний фюзеляжа с частотой пульсации жидкости. Выход из положения нашли, заменив трубки на резиновые шланги.Хотя перспективы получения реальных, а не «бумажных» подъемных двигателей оставались весьма неопределенными, наконец, было готово пневматическое взлетно-посадочное устройство (ПВПУ). Поплавки ПВПУ имели длину 14 м, диаметр 2,5 м, объем каждого составлял 50 м3. Они были спроектированы Долгопрудненским КБ агрегатов и изготовлены на Ярославском шинном заводе.Поэтому зиму 1973-74 гг. ВВА-14 («1М») провел в цехе опытного производства ОКБ где на него установили системы и устройства ПВПУ. Одновременно выполнялись статические испытания на специально подготовленном поплавке.Выпуск поплавков осуществлялся двенадцатью управляемыми пневматическими кольцевыми эжекторами — по одному на каждый отсек поплавка. Воздух высокого давления отбирался от компрессоров маршевых двигателей. Уборка ПВПУ осуществлялась гидроцилиндрами, которые воздействовали через продольные штанги на тросы, охватывающие поплавки, вытесняя воздух из их отсеков через редукционные клапаны.


Поплавки и система их уборки-выпуска была буквально напичканы различными уникальными устройствами и системами, поэтому оказались очень непростыми в доводке и наладке, которые продолжались всю весну и часть лета 1974 г.Затем начался этап испытаний ВВА-14 на плаву. Поскольку шасси все время морских испытаний находилось в убранном положении, для спуска и подъема машины с надутыми поплавками были изготовлены специальные перекатные тележки.Первым делом была проверена непотопляемость самолета при разгерметизации отсеков поплавков. Сброс давления из двух отсеков одного поплавка подтвердил, что ВВА-14 сохраняет при этом нормальную плавучесть. После наступил черед рулежек с постепенным увеличением скорости движения по воде. Испытания показали, что максимальная скорость при этом не должна превышать 35 км/ч. На больших скоростях машина начинала опускать нос к поверхности воды и возникала опасность деформации и последующего разрушения мягких поплавков. Но для вертикально взлетающей амфибии этой скорости было вполне достаточно.


По окончании этапа мореходных испытаний испытательные полеты продолжились пока при убранных поплавках ПВПУ. Однако к этому времени интерес заказчика к ВВА-14 заметно угас. Основное внимание уделялось совершенствованию уже поступивших на вооружение Бе-12, Ил-38 и Ту-142. Стало окончательно ясно, что подъемных двигателей с приемлемыми характеристиками не будет даже в отдаленном будущем. Поэтому ещё в разгар работ по монтажу и испытаниям ПВПУ Р.Л. Бартини принял решение доработать «1М» в аппарат по типу экраноплана с поддувом воздуха от дополнительных двигателей под центроплан. Начатые в этом направлении работы привели к созданию экспериментального экранолета 14М1П, но его испытания начались уже без Бартини. В декабре 1974 г. Роберта Людовиковича не стало.Летные испытания, по инерции, продолжились и в 1975 г. Предстояло испытать ПВПУ и поведение машины с выпущенными поплавками в полете. Предварительно провели серию пробежек и подлетов с постепенным увеличением степени выпуска поплавков (для этого гидросистема самолета была соответствующим образом модифицирована).Первый полет ВВА-14 с полным выпуском и уборкой поплавков в воздухе состоялся 11 июня 1975 г. с экипажем в составе Ю.М. Куприянова и Л.Ф. Кузнецова. Всего в период с 11 по 27 июня, в испытательных полетах, было выполнено 11 выпусков-уборок ПВПУ. Особых проблем в поведение машины в воздухе выпущенные поплавки не вызвали. Выявившаяся при испытаниях тряска самолета с надутыми поплавками при выпущенных закрылках, «как при пробежках по грунтовой полосе» по замечанию летчиков, опасности не представляла и могла быть устранена изменением формы хвостовых частей поплавков. Все попытки самолета рыскать при выпущенном ПВПУ устойчиво парировались системой автоматического управления САУ-М.Эти полеты стали завершающим аккордом в истории ВВА-14. Всего с сентября 1972 г. по июнь 1975 г. на машине «1М» было выполнено 107 полетов с налетом более 103 часов.

После прекращения программы ВВА-14, самолет «1М» закатили в цех на переоборудование в экспериментальный экранолет 14М1П, собранный планер машины «2М» отвезли на дальний край заводской стоянки, третий экземпляр вертикально взлетающей амфибии так и не начали строить.На базе ВВА-14 существовали проекты создания модификаций различного назначения.Корабельный вариант имел бы складные консоли крыла и хвостовое оперение и мог базироваться на противолодочных крейсерах проекта 1123, специально дооборудованных крупнотоннажных сухогрузах и танкерах, либо на противолодочных крейсерах-носителях ВВА-14.В транспортном варианте ВВА-14 мог бы перевозить 32 человека или 5000 кг груза на расстояние до 3300 км.В поисково-спасательном варианте в состав экипажа амфибии дополнительно включались два спасателя и врач. В грузовом отсеке размещалось специальное оборудование (лодки, плоты, лебедка и т.д.). Летные характеристики ВВА-14 в спасательном варианте оставались практически такими же, как у противолодочного самолета за исключением дальности полета, которая могла быть увеличена на 500-1000 км.


В варианте самолета-ретранслятора для ВВА-14 планировалось разработать специальную антенну и систему для её подъема на высоту 200-300 м, при нахождении машины на плаву.На ВВА-14 предусматривалась установка перспективного поисково-ударного комплекса «Полюс» для поражения ракетных подводных лодок на удалении от самолета не менее 200 км. В этом варианте амфибия несла одну ракету «воздух-поверхность» весом 3000-4000 кг, длиной до 9,5 м и калибром 700-780 мм в нижней части фюзеляжа и радиолокационный дальномер на киле. Кроме того, в этом варианте устанавливались инфракрасный пеленгатор и панорамная РЛС. Все эти работы не вышли из первоначальной стадии рассмотрения технических предложений и изучения вопроса заказчиком.Но в целом затраченные усилия не пропали даром. В результате испытаний был получен богатый экспериментальный материал, а сама работа над ВВА-14 стала великолепной школой для специалистов ОКБ.


Конструкция СВВП выполнен по схеме высокоплана с составным крылом из несущего центроплана и консолей разнесенным горизонтальным и вертикальным оперением и поплавковым взлетно-посадочным устройством. Конструкция в основном выполнена из алюминиевых сплавов с антикоррозионным покрытием и кадмированных сталей.Фюзеляж полумонококовой конструкции, переходящий в центроплан. В носовой части размещена трехместная кабина экипажа, отделяемая при аварийных ситуациях и обеспечивающая спасение экипажа на всех режимах полета без использования катапультных кресел. За кабиной размещен отсек силовой установки с 12 подъемными двигателями и отсек вооружения.Крыло состоит из прямоугольного центроплана и отъемных частей (ОЧК) трапециевидной формы в плане с углом поперечного V +2╟ и заклинения 1╟, образованных профилями с относительной толщиной 0,12. На ОЧК имеются по всему размаху предкрылки, однощелевые закрылки и элероны. С центропланом сопрягаются сигарообразные обтекатели, на которых размещается оперение и ПВПУ.Оперение свободнонесущее, расположенное на обтекателях, стреловидное. Горизонтальное оперение общей площадью 21,8 м2 имеет стреловидность по передней кромке 40╟, снабжено рулями высоты общей площадью 6,33 м2. Вертикальное оперение двухкилевое общей площадью 22,75 м2 имеет стреловидность по передней кромке 54╟, общая площадь рулей направления 6,75 м2.Пневматическое взлетно-посадочное устройство включает надувные поплавки длиной 14 м, диаметром 2,5 м и объемом по 50 м3, которые имеют по 12 отсеков. Для выпуска и уборки поплавков используется сложная механогидропневмоэлектрическая система с 12 кольцевыми инжекторами (по одному на каждый отсек). Воздух в систему подается от компрессоров маршевых двигателей. Для транспортировки самолета на земле предусмотрено убирающееся трехопорное колесное шасси с носовой опорой и главными опорами на обтекателях по бокам поплавков, каждая опора имеет по два колеса. Было использовано шасси серийного Ту-22.Силовая установка комбинированная, состоит из двух маршевых двухконтурных двигателей Д-30М тягой по 6800 кгс (генеральный конструктор П.А. Соловьев), установленных рядом в отдельных гондолах сверху центроплана, и 12 подъемных ТРДД РД-36-35ПР тягой по 4400 кгс (главный конструктор П.А. Колосов), установленных попарно с наклоном вперед в отсеке фюзеляжа с открывающимися вверх створками воздухозаборников для каждой пары двигателей и нижними створками с решетками, отклонение которых могло регулироваться. Подъемные двигатели к началу летных испытаний не были доведены, и полеты самолета проводились без них. Предусматривалось использование вспомогательной силовой установки с турбокомпрессором.Топливная система включает 14 баков; два бака отсека и 12 протектированных баков общей емкостью 15 500 л. Предусматривалась установка системы заправки топливом на плаву.


Система управления обеспечивала управление аэродинамическими рулями с помощью гидроусилителей, как на обычных самолетах, а управление на режимах вертикального взлета и посадки и переходных режимах должно было осуществляться с помощью 12 струйных рулей, установленных попарно и использующих сжатый воздух, отбираемый от подъемных двигателей. Система автоматического управления обеспечивает стабилизацию по тангажу, курсу и высоте на всех режимах полета.Самолетные системы. Самолет оснащен всеми необходимыми для эксплуатации системами: противопожарной в отсеках силовой установки, противообледенительной с подводом горячего воздуха к носкам крыла, оперения и воздухозаборников, имеются кислородная система и система кондиционирования воздуха.Оборудование. На самолете было установлено необходимое для летных испытаний пилотажно-навигационное и радиосвязное оборудование и предусматривалось использование новейшего оборудования для обеспечения автоматической стабилизации при взлете и посадке и на маршруте для автономного полета в сложных метеорологических условиях. В спасательном варианте СВВП предполагалось оснастить аварийно-спасательными радиосредствами. На противолодочном СВВП предполагалось использовать поисково-прицельную систему ╚Буревестник╩, обеспечивающую поиск подводных лодок и определение координат и необходимых данных для применения оружия. Для обнаружения подводных лодок предполагалось использовать 144 радиогидроакустических буя РГБ-1У и до ста взрывных источников звука, а также поисковый аэромагнитометр ╚Бор-1╩.Вооружение. В противолодочном варианте предполагалось разместить в бомбоотсеке различное вооружение общим весом до 2000 кг: 2 авиационные торпеды или 8 авиационных мин ИГМД-500 (при увеличении боевой нагрузки до 4000 кг) или 16 авиационных бомб ПЛАБ-250. Для обороны на маршруте патрулирования предусматривался оборонительный комплекс, обеспечивающий постановку активных и пассивных помех.


ЛТХ:
Модификация ВВА-14
Размах крыла, м 28.50
Длина, м 25.97
Высота, м 6.79
Площадь крыла, м2 217.72
Масса, кг
пустого самолета 35356
максимальная взлетная 52000
топлива 14000
Тип двигателя
маршевые 2 ДТРД Д-30М
подъемные 12 ДТРД РД36-35ПР
Тяга, кгс
маршевые 2 х 6800
подъемные 12 х 4400
Максимальная скорость, км/ч 760
Крейсерская скорость, км/ч 640
Скорость барражирования, км/ч 360
Практическая дальность, км 2450
Продолжительность патрулирования, ч 2.25
Практический потолок, м 10000
Экипаж, чел 3
Вооружение: боевая нагрузка — 2000 кг (максимально — 4000 кг),
2 авиационные торпеды или 8 авиационных мин ИГМД-500 (при увеличении боевой нагрузки до 4000 кг) или 16 авиационных бомб ПЛАБ-250.

Скажем немного о конструкции поплавков и системах их уборки и выпуска.

Поплавки ПВПУ имели длину 14 м, диаметр 2,5 м. Объем каждого составлял по 50 м. Они были спроектированы Долгопрудненским конструкторским бюро агрегатов (ДКБА) и изготовлены Ярославскими шинниками.

Система уборки-выпуска ПВПУ оказалась весьма непростой в доводке и наладке испытаний, поскольку этот механогидропневмоэлектрический комплекс вобрал в себя различные уникальные специализированные устройства, натурная лабораторная отработка которых в большинстве своем оказалась по срокам, а то и по технике неосуществленной (собственно поплавки, системы их привода и управления).

Для отработки ПВПУ необходимо было подавать при выпуске (наполнении) большое количество активного воздуха от имитатора компрессоров маршевых двигателей. Из положения вышли, спроектировав и изготовив фильтровальную станцию, очищавшую воздух высокого давления, подаваемый от заводской пневмосети. Выпуск поплавков осуществлялся двенадцатью управляемыми пневматическими кольцевыми эжекторами — по одному на каждый отсек поплавка.

Процесс начинался открытием замков гидроцилиндров уборки, которые при выпуске играли роль де-мпферов, обеспечивая тросами, охватывающими поплавки, сопротивление оболочки. Излишек воздуха для поддержания постоянного максимального избыточного давления в поплавках через редукционные клапаны выбрасывался в атмосферу. При режиме работы «выпуск — уборка ПВПУ» избыточное давление обеспечивалось в пределах 0,15…0,25 МПа, или (0,015…0,025) атм.

После полного формообразования по сигналу выпущенного положения управляемый эжектор переключался на режим подачи активного воздуха без смешивания его с атмосферным — режим «дожим». По достижении давления (1,5…2,5) МПа (или 0,15…0,25 атм), эжектор автоматически закрывался по сигналу избыточного давления «0,2 кгс/см » и периодически включался на «дожим» при снижении давления в поплавке вследствие охлаждения воздуха или из-за негерметичности. Максимальное избыточное давление ограничивалось переключением редукционного клапана на давление 3,5 + 0,5 МПа (0,35 + 0,05 атм).

Подача воздуха на «дожим» при выпуске осуществлялась от компрессора маршевых двигателей, а на стоянке и при вертикальном полете — от пневмосистемы высокого давления или от компрессора вспомогательной энергоустановки ТА-6. В самолетном полете дополнительно подавался атмосферный воздух от специальных воздухозаборников.

Уборка ПВПУ осуществлялась достаточно мощными гидроцилиндрами, которые воздействовали через продольные штанги на тросы, охватывающие поплавки, вытесняя воздух из отсеков через упомянутые редукционные клапаны. Они переключались на режим «выпуск — уборка ПВПУ» (0выми замками, открываемыми снаружи пневмоцилиндрами.

Поплавки и комплекс систем их привода и управления были буквально напичканы изобретениями, которые, как и у всех изобретателей, давались с большим трудом и подогреваемым Р. Бартини стремлением поиска нового, но — непременно! — оптимального решения. Вот два примера.

Первый. Эксплуатационная нагрузка от механизма уборки поплавков, преодолеваемая мощными гидроцилиндрами, составляла 14 тонн и была пружинная, не зависевшая от хода (900 мм). В убранном положении поршень фиксировался цанговым замком цилиндра, который при выпуске поплавков должен был открываться первым. Каждый понимает: если толкать дверь, нагружая замок, открыть его гораздо труднее, чем если перекосы и пружинение двери устранить рукой, а затем открывать свободный замок.
Так вот, предположение о возможности заклинивания цанговых замков, нагруженных большим усилием при их открытии, в лаборатории «блестяще» подтвердилось после трех открытий замка под нагрузкой. Что делать? Тогда обиходное решение с дверным замком было перенесено на систему ПВПУ: перед открытием замка вначале подавали давление на уборку поплавков, разгружали замок, открывали его снаружи, после чего снимали сигнал уборки, и освобожденный поршень свободно шел на выпуск.

Второй пример. Эжекторная подача воздуха в отсеки поплавков при выпуске обеспечивала его уменьшенную температуру. Однако при заполнении до давления максимальной работоемкости 0,2 атм («дожиме») в отсеки поплавков через специальный канал эжектора подавался горячий воздух от компрессоров ТРД и возникала вероятность ускоренного старения и растрескивания эластичной оболочки поплавков в зоне установки эжекторов.

Для предотвращения этой опасности конец канала выпуска горячего воздуха был снабжен специальным рассекателем, в конструкции которого, как в миниатюре, решались задачи, известные из области воздухозаборников сверхзвуковых самолетов, — каналы предусматривали борьбу со скачками уплотнения, подсос холодного воздуха и т. п.

Роберт Бартини — учитель Королева , ну а так же мы рассматривали уже

Dornier Do.31, который разрабатывался в 1960-е годы в ФРГ инженерами компании Dornier, является по-настоящему уникальным летательным аппаратом. Это единственный в мире транспортный самолет вертикального взлета и посадки. Он разрабатывался по заказу военного ведомства ФРГ в качестве тактического реактивного транспортного самолета. Проект, к сожалению, так и не пошел дальше стадии экспериментального самолета, всего было произведено три прототипа Dornier Do.31. Один из построенных прототипов сегодня является важным экспонатом авиационного музея в Мюнхене.

В 1960 году немецкая компания «Дорнье» в условиях строгой секретности по заказу министерства обороны ФРГ приступила к проектированию нового тактического военно-транспортного самолета вертикального взлета и посадки. Самолет должен был получить обозначение Do.31, его особенностью была комбинированная силовая установка из подъемно-маршевых и подъемных двигателей.

Проектированием нового самолета занимались не только инженеры компании «Дорнье», но и представители других немецких авиационных фирм: «Везер», «Фокке-Вульф» и «Гамбургер Флюгцойгбау», которые в 1963 году были объединены в единую авиационную компанию, получившую обозначение WFV. При этом сам проект военно-транспортного самолета Do.31 был частью программы ФРГ по созданию вертикально взлетающих транспортных самолетов. В этой программе были учтены и переработаны тактико-технические требования NATO к военно-транспортному СВВП.

В 1963 году при поддержке министерств обороны ФРГ и Великобритании было подписано соглашение сроком на два года об участии в проекте британской компании «Хоукер Сиддли», которая имела большой опыт по проектированию самолета вертикального взлета и посадки «Харриер». Примечательно, что после окончания срока действия договора он не был продлен, поэтому в 1965 году компания «Хоукер Сиддли» вернулась к разработке собственных проектов. В то же время немцы пытались привлечь к работе над проектом и производством самолета Do.31 компании из США. В этой области немцы добились определенных успехов, им удалось подписать договор о совместных исследованиях с агентством NASA.

Для того чтобы определиться с оптимальной схемой разрабатываемого транспортника, компанией «Дорнье» было осуществлено сравнение вертикально взлетающих летательных аппаратов трех типов: вертолета, самолета с поворотными винтами и самолета с подъемно-маршевыми ТРДД. В качестве исходного задания конструкторы использовали следующие параметры: перевозка на расстояние до 500 км трех тонн груза и последующее возвращение на базу . Проведенные исследования продемонстрировали, что вертикально взлетающий тактический военно-транспортный самолет, оснащенный подъемно-маршевыми ТРДД имеет ряд важных преимуществ по сравнению с двумя другими типами рассматриваемых летательных аппаратов. Поэтому в компании Dornier сосредоточились на работе над выбранным проектом и занялись расчетами, направленными на выбор оптимальной схемы размещения силовой установки.

Проектированию первого прототипа Do.31 предшествовали достаточно серьезные испытания моделей, которые велись не только в ФРГ в Геттингене и Штуттгарте, но и в США, где ими занимались специалисты NASA. Первые модели военно-транспортного самолета не имели гондол с подъемными ТРД, так как планировалось, что силовая установка самолета будет состоять лишь из двух подъемно-маршевых ТРДД компании Bristol с тягой по 16 000 кгс на форсаже. В 1963 году в США в научно-исследовательском центре NASA в Лэнгли состоялись испытания моделей самолета и отдельных элементов его конструкции в аэродинамических трубах. Позднее состоялись испытания летающей модели в свободном полете.

В результате проведенных в двух странах исследований был сформирован окончательный вариант будущего самолета Do.31, он должен был получить комбинированную силовую установку из подъемно-маршевых и подъемных двигателей. Для исследования управляемости и устойчивости самолета с комбинированной силовой установкой в режиме висения компанией «Дорнье» был построен экспериментальный летающий стенд, обладавший ферменной конструкцией крестообразной формы. Габаритные размеры стенда повторяли габариты будущего Do.31, а вот общая масса была существенно меньше – всего 2800 кг. К концу 1965 года данный стенд прошел большой испытательный путь, всего он выполнил 247 полетов. Данные полеты сделали возможным строительство полноценного военно-транспортного самолета вертикального взлета и посадки.

На следующем этапе специально для испытаний конструкции, отработки техники пилотирования и проверки надежности систем нового аппарата был создан экспериментальный самолет, получивший обозначение Do.31E. Минобороны ФРГ заказало к постройке три подобных машины, при этом два экспериментальных самолета предназначались для проведения летных испытаний, а третий – для проведения статических испытаний.

Тактический военно-транспортный самолет Dornier Do 31 был выполнен по нормальной аэродинамической схеме. Это был высокоплан, оснащенный маршевыми и подъемными двигателями. Первоначальная концепция предполагала установку двух турбовентиляторных двигателей Bristol Pegasus в каждой из двух внутренних мотогондол и четырех подъемных двигателей Rolls-Royce RB162, которые располагались в двух внешних мотогондолах на концах крыла. Впоследствии планировалось установить на самолет более мощные и совершенные двигатели RB153.

Фюзеляж самолета типа полумонокок был цельнометаллическим и имел круглое поперечное сечение диаметром 3,2 метра. В носовой части фюзеляжа находилась кабина экипажа, рассчитанная на двух пилотов. За ней располагалась грузовая кабина, которая имела объем 50 м 3 и габаритные размеры 9,2×2,75×2,2 метра. В грузовой кабине можно было свободно разместить 36 десантников со снаряжением на откидывающихся сиденьях или 24 раненных на носилках . В хвостовой части самолета находился грузовой люк, здесь имелась погрузочная рампа.

Шасси самолета было убирающимся трехопорным, на каждой стойке имелись сдвоенные колеса. Главные опоры убирались назад в гондолы подъемно-маршевых двигателей. Носовая опора стойки шасси была выполнена управляемой и самоориентирующейся, она также убиралась назад.

Постройка первого экспериментального самолета была закончена в ноябре 1965 года, он получил обозначение Do.31E1. Впервые самолет поднялся в воздух 10 февраля 1967 года, выполнив обычные взлет и посадку, так как на тот момент подъемные ТРД на самолет установлены не были. Вторая экспериментальная машина Do.31E2 применялась для проведения различных наземных испытаний, а третий экспериментальный транспортный самолет Do.31E3 получил полный комплект двигателей. Третий самолет совершил первый полет с вертикальным взлетом, это произошло 14 июля 1967 года . Этот же самолет выполнил полный переход от вертикального взлета к горизонтальному полету с последующей вертикальной посадкой, это произошло 16 и 21 декабря 1967 года.

Именно третий экземпляр экспериментального самолета Dornier Do 31 в настоящее время находится в Мюнхенском музее авиации. В 1968 году данный самолет был впервые представлен широкой публике, это произошла в рамках международной авиационной выставки, которая проходила в Ганновере. На выставке новый транспортник привлек к себе внимание представителей британских и американских фирм, которые были заинтересованы в возможностях не только военного, но и его гражданского применения. Интерес к самолету проявляли и в американском космическом агентстве, NASA оказала финансовую помощь для проведения летных испытаний и исследования оптимальных траекторий захода на посадку самолетов с вертикальным взлетом и посадкой.

В следующем году экспериментальный самолет Do.31E3 показывали на авиакосмическом салоне в Париже, здесь самолет также пользовался успехом, привлекая к себе внимание зрителей и специалистов. 27 мая 1969 года самолет выполнил перелет из Мюнхена в Париж. В рамках данного перелета было установлено три мировых рекорда для самолетов с вертикальным взлетом и посадкой: скорости полета – 512,962 км/ч, высоты – 9100 метров и дальности – 681 км . К середине того же года на СВВП Do.31E было выполнено уже 200 полетов. Во время данных полетов летчиками-испытателями было осуществлено 110 вертикальных взлетов с последующим переходом к горизонтальному полету.

В апреле 1970 года экспериментальный самолет Do.31E3 совершил свой последний полет, финансирование данной программы было прекращено, а сама она свернута . Это произошло несмотря на успешный, а главное безаварийный ход летных испытаний нового летательного аппарата. На тот момент общая стоимость затрат ФРГ на программу по созданию нового военно-транспортного самолета превысила 200 миллионов марок (начиная с 1962 года).

Одними из технических причин свертывания перспективной программы можно было назвать сравнительно невысокую максимальную скорость самолета, его грузоподъемность и дальность полета особенно в сравнении с традиционными самолетами транспортной авиации. У Do.31 скорость полета снижалась, в том числе, и из-за высокого аэродинамического сопротивления мотогондол его подъемных двигателей. Еще одной причиной свертывания работ было назревшее на тот момент разочарование в военных, политических и конструкторских кругах самой концепцией самолетов с вертикальным взлетом и посадкой.

Несмотря на это, компанией Dornier на базе экспериментального самолета Do.31Е были разработаны проекты усовершенствованных военно-транспортных СВВП, обладавших большей грузоподъемностью – Do.31-25. У них число подъемных двигателей в гондолах планировалось увеличить сначала до 10, а затем и до 12 штук. Помимо этого инженерами «Дорнье» был спроектирован самолет вертикального взлета и посадки Do.131В, который обладал сразу 14 подъемными ТРД.

Также был разработан отдельный проект гражданского самолета Do.231, который должен был получить два подъемно-маршевых ТРДД компании Rolls Royce тягой 10 850 кгс каждый и еще 12 подъемных ТРДД той же компании с тягой по 5935 кгс, из которых восемь двигателей располагались по четыре в гондолах и четыре по два в носовой и хвостовой частях фюзеляжа самолета. Расчетная масса данной модели летательного аппарата с вертикальным взлетом и посадкой достигала 59 тонн при полезной нагрузке до 10 тонн. Планировалось, что Do.231 сможете перевозить до 100 пассажиров с максимальной скоростью 900 км/ч на расстояние в 1000 километров.

Однако данные проекты так и не были реализованы. При этом экспериментальный Dornier Do 31 был (и остается в настоящее время) единственным в мире построенным реактивным военно-транспортным самолетом вертикального взлета и посадки.

Летно-технические характеристики Dornier Do.31:
Габаритные размеры:
— длина – 20,88 м,
— высота – 8,53 м,
— размах крыла – 18,06 м,
— площадь крыла – 57 м 2 .
Масса пустого – 22 453 кг.
Нормальная взлетная масса – 27 442 кг.
Силовая установка: 8 подъемных турбореактивных двигателей Rolls Royce RB162-4D, тяга взлетная – 8х1996 кгс; 2 подъемно-маршевых турбовентиляторных двигателя Rolls Royce Pegasus BE.53/2, тяга 2х7031 кгс.
Максимальная скорость – 730 км/ч.
Крейсерская скорость – 650 км/ч.
Практическая дальность – 1800 км.
Практический потолок – 10 515 м.
Вместимость – до 36 солдат со снаряжением или 24 раненых на носилках.
Экипаж – 2 человека.

Источники информации:
— www.airwar.ru/enc/xplane/do31.html
— igor113.livejournal.com/134992.html
— www.arms-expo.ru/articles/129/67970

Самолеты вертикального (укороченного) взлета и посадки

Самолеты вертикального взлета и посадки, летающие на крейсерских (горизонтальных) режимах полета как обычные самолеты, способны, как вертолеты, висеть в воздухе, а также взлетать и садиться вертикально. Для обеспечения режимов ВВП (вертикального взлета и посадки) на таком самолете необходимо иметь специальную силовую установку, обеспечивающую создание подъемной силы, превышающей вес самолета.
Стартовая вертикальная тяговооруженность (отношение подъемной силы, создаваемой двигателями, к весу самолета) современных СВВП находится в пределах 1,05-1,45.
В зависимости от того, каким образом создается подъемная сила на режимах ВВП и сила тяги на маршевых (крейсерских) режимах, можно провести классификацию СВВП (рис. 7.69).
Единая силовая установка (СУ) имеет в своем составе один или несколько подъемно-маршевых двигателей , которые на режимах ВВП создают вертикальную тягу, а на обычных режимах - маршевую тягу. Тяга создается либо воздушным винтом, либо струей газов реактивного двигателя. Изменение направления вектора тяги подъемно-маршевых двигателей может быть конструктивно обеспечено либо поворотом всего двигателя в нужном направлении, например относительно крыла или вместе с крылом, на котором они закреплены, либо за счет изменения направления струи (и вектора тяги) реактивного двигателя.

Принципиальная схема одного из возможных устройств, обеспечивающих изменение направления вектора тяги P с помощью скользящего козырька 1 , проиллюстрирована рис. 7.70.

Составная СУ включает в себя две группы двигателей: одна из них - для создания вертикальной тяги на режимах ВВП (подъемные двигатели ), другая - для создания маршевой тяги (маршевые двигатели ).
Комбинированная СУ также состоит из двух групп двигателей:подъемно-разгонных иподъемно-маршевых , которые (в большей или меньшей мере) участвуют в создании и вертикальной и маршевой тяги.

Выбор типа силовой установки существенным образом влияет на возможность решения специфических проблем, возникающих при проектировании СВВП, и определяет фактически его концепцию, аэродинамическую и конструктивно-силовую компоновку.
Двигатели 1 (рис. 7.71) создают подъемную силу (P=G /2 ), уравновешивающую силу тяжести G самолета. На режимах работы вблизи экрана 2 (поверхности ВПП) струи двигателей 3 создают вокруг самолета сложные течения, обусловленные взаимодействием отраженных от экрана газовых струй 4 с воздушными потоками 5 , текущими в воздухозаборники двигателей. Форма и интенсивность этих течений на

режимах висения вблизи экрана, взаимодействие этих течений с набегающим потоком на режимах ВВП и переходных режимах (от вертикального к горизонтальному движению) зависят от мощности, количества и расположения двигателей (т. е. от компоновки СВВП), что существенным образом влияет на аэродинамические и моментные характеристики СВВП, т. е. определяет его компоновку.
Воздействие газовых струй двигателей вызываетэрозию поверхности аэродрома , степень которой зависит и от типа двигателей, создающих подъемную силу, и от их расположения. Частицы поверхности аэродрома, вымываемые газовыми струями, вместе с высокотемпературными восходящими вверх течениями воздействуют на конструкцию СВВП и, попадая в воздухозаборники двигателей, снижают надежность их работы, ресурс и тяговые характеристики. С целью уменьшения влияния струй на поверхность аэродрома и на самолет часто применяется методика эксплуатации СВВП в режиме укороченного взлета и посадки (УВП), когда дистанции разбега и пробега составляют всего несколько десятков метров. Это позволяет также увеличить весовую отдачу СВВП за счет существенно меньших расходов топлива на режимах взлета и посадки.
Одной из основных проблем, возникающих при разработке СВВП, является обеспечение балансировки, устойчивости и управляемости их на режимах ВВП и переходных режимах, когда поступательная скорость равна нулю либо недостаточно велика для эффективной работы аэродинамических поверхностей, создающих балансирующие и управляющие силы и моменты.
Балансировка, устойчивость и управляемость СВВП на этих режимах обеспечивается либо рассогласованием (модуляцией) тяги двигателей, т.е. увеличением или уменьшением тяги одного двигателя по сравнению с другим, либо с помощью системы струйных рулей , либо комбинацией этих способов.

Рассогласование ΔP тяги (рис. 7.72) маршевых двигателей 3 приводит к возникновению момента рыскания ΔM y , рассогласование ΔP 1 первой группы подъемных двигателей 1 приводит к возникновению момента крена ΔM x . Рассогласование тяги ΔP 1 и ΔP 2 первой и второй группы подъемных двигателей 2 приводит к возникновению момента тангажа ΔM z .
Струйная система управления СВВП (рис. 7.73) включает в себя несколько удаленных от центра масс самолета на максимально возможное расстояние реактивных сопел (1, 5, 6 ), к которым с помощью трубопроводов 4 подводится сжатый воздух от компрессора подъемно-маршевого двигателя 3 . Конструкция сопла 1 позволяет регулировать расход воздуха и, следовательно, тягу. Конструкция сопел 5 и 6 позволяет изменять не только величину, но и направление силы тяги на противоположное (реверсировать тягу сопла).
При сбалансированном по тангажу (относительно оси Z ) самолете (сумма моментов сил тяги сопла 1 , подъемного 2 и подъемно-маршевого двигателя 3 относительно центра масс равна нулю) увеличение силы тяги сопла 1 вызовет кабрирующий момент, уменьшение - пикирующий.

Показанное на рис. 7.73 направление струй из сопел 5 и 6 приводит к кренению самолета на левое крыло и развороту влево.

Управление режимом работы двигателей и струйными рулями для изменения действующих на самолет сил и моментов на режимах ВВП и переходных режимах летчик осуществляет такими же рычагами управления, как и на обычном самолете, т. е. одновременно с созданием управляющих реактивных сил соответствующим образом отклоняются и аэродинамические рулевые поверхности (руль высоты, элероны и руль направления), которые, однако, не создают управляющих сил на малых (доэволютивных) скоростях поступательного движения самолета. С ростом скорости поступательного движения растут и силы на рулевых поверхностях и с помощью автоматики постепенно выключаются из работы системы струйного управления.

Здесь необходимо отметить, что на малых (доэволютивных) скоростях СВВП не обладает собственной устойчивостью, так как малы аэродинамические силы, способные возвратить его в исходное положение при случайных внешних воздействиях. Поэтому устойчивость СВВП на этих режимах (стабилизация его и поддержание состояния балансировки) обеспечивается включенными в систему управления средствами автоматики, которые, реагируя на угловые перемещения самолета при возмущениях, без вмешательства летчика с помощью струйных рулей возвращают самолет в исходное положение балансировки.
Мы перечислили здесь лишь некоторые проблемы формирования облика СВВП, решение которых уже на ранних стадиях проектирования требует взаимодействия проектировщиков различных специализаций.
К настоящему моменту в мире спроектировано, построено и испытано более 50 типов самолетов вертикального (укороченного) взлета и посадки. В большинстве проектов этих самолетов в основу были положены требования военного применения.
Первый отечественный боевой СВВП был создан в ОКБ им. А.С. Яковлева (см. раздел 20.2).
Преимущества СВВП, о которых мы упоминали в начале раздела 7.4, несомненно приведут к созданию СВВП, способных конкурировать с обычными самолетами при перевозках пассажиров и грузов на короткие и средние расстояния.


Гидроавиация

Работы по созданию самолетов, приспособленных для взлета с водной поверхности и посадки на нее, начались практически одновременно с работами по созданию самолетов, базирующихся на земле.
28 марта 1910 года первый полет нагидросамолете (от гидро... (греч. hydor - вода) и самолет) сoбственной конструкции совершил француз А. Фабр.
Исторически сложилось так, что у истоков отечественного воздухоплавания и авиации стояли офицеры военно-морского флота России. Первыми в мире они разработали тактику морской авиации, осуществили с воздуха бомбардировку вражеского корабля, создали проект авианосца, первыми пролетели в небе Арктики.

Географические и стратегические особенности театров военных действий того времени, протяженные морские границы на Балтийском и Черном морях, отсутствие специально оборудованных аэродромов для эксплуатации сухопутных самолетов и в то же время обилие крупных рек, озер, свободных морских пространств обусловили потребность создания морского самолетостроения в нашей стране.
Развитие гидроавиации началось с постановки сухопутного самолета на поплавки. Первые поплавковые гидросамолеты (рис. 7.74) имели два основных поплавка 1 и дополнительный 2 (вспомогательный) поплавок в хвостовой или носовой части.
В зависимости от того, каким способом обеспечивается базирование и эксплуатация самолета с поверхности акваторий (от лат. aqua - вода) - гидродромов , можно провести классификацию гидросамолетов (рис. 7.75).
Поплавковые схемы применяются в настоящее время для легких самолетов, хотя уже в 1914 году совершил первый полет четырехмоторный тяжелый самолет "Илья Муромец" (см. рис. 19.1), поставленный на поплавки по трехпоплавковой схеме с хвостовым поплавком, в 1929 году в перелете по маршруту Москва - Нью-Йорк самолета "Страна Советов" (см. рис. 19.7) 7950 км - от Хабаровска до Сиэтла самолет летел над водой, и на этом участке сухопутное шасси заменялось поплавковым по двухпоплавковой схеме .

Рост размеров и масс гидросамолетов и, как следствие, рост размеров поплавков позволил размещать в них экипаж и оборудование, что привело к созданию гидросамолетов типа "летающая лодка" однолодочной схемы и двухлодочнойсхемы - катамаран (от тамильского каттумарам , буквально - связанные бревна).
Интегральная схема наиболее целесообразна для тяжелых многоцелевых океанских гидросамолетов. Частично погруженное в воду крыло позволяет уменьшить размеры лодки и повысить аэрогидродинамическое совершенство гидросамолета.
Самолет-амфибия (от греч. amphibios - ведущий двойной образ жизни) приспособлен для взлета с земли и воды и посадки на них.
Таким образом, технические решения, обеспечивающие базирование и эксплуатацию самолета с водной поверхности, фактически определяют облик (аэродинамическую схему) гидросамолета.
Сложность и количество проблем, которые должны решить проектировщики при создании гидросамолета, существенно возрастают, поскольку помимо высоких аэродинамических и взлетно-посадочных характеристик обычного самолета должны быть обеспечены и заданные ТЗ мореходные качества.
Оценить мореходные качества гидросамолета позволяют методы научной дисциплины "Гидромеханика", изучающей движение и равновесие жидкостей, а также взаимодействие между жидкостями и твердыми телами, полностью или частично погруженными в жидкость.
Мореходные качества (мореходность) гидросамолета характеризуют возможность его эксплуатации в акваториях с определенными гидрометеорологическими условиями - скоростью и направлением ветра, направлением, скоростью движения, формой, высотой и длиной волн воды.
Мореходность гидросамолета оценивается предельным волнением акватории, при котором возможна безопасная эксплуатация.
Аналогично тому, как для оценки летных характеристик самолета (см. раздел 3.2.2) применяется международная стандартная атмосфера (МСА), для характеристики волнения акватории используется определенная шкала (математическая модель), устанавливающая связь между словесной характеристикой волнения, высотой волны и баллом (от 0 до IX) - степенью волнения .
В соответствии с этой шкалой, например, слабое волнение (высота волны до 0,25 м) оценивается баллом I, значительное волнение (высота волны 0,75-1,25 м) оценивается баллом III, сильное волнение (высота волны 2,0-3,5 м) оценивается баллом V, исключительное волнение (высота волны 11 м) оценивается баллом IX.
Мореходные качества (мореходность ) гидросамолета включают в себя такие характеристики гидросамолета, как плавучесть , остойчивость , управляемость , непотопляемость и т. п.
Эти качества определяются формой и размерами находящейся под водой водоизмещающейчасти (лодки или поплавка) гидросамолета, распределением масс гидросамолета по длине и высоте.
В дальнейшем при рассмотрении мореходных характеристик гидросамолета, если их без особой оговорки в равной мере можно отнести к лодке и поплавку, будем использовать термин "лодка". Плавучесть - способность гидросамолета плавать в заданном положении относительно водной поверхности.
Гидросамолет, как и любое другое плавающее тело, например судно, поддерживается на плаву архимедовой силой

Р = W ρ в g = G ,

Сила тяжести гидросамолета G приложена в центре масс самолета (ц.м.),сила поддержания (архимедова сила, сила воздействия вытесненной жидкости на лодку гидросамолета) Р приложена в центре масс вытесненного лодкой объема воды, или, по корабельной терминологии (которой широко пользуются проектировщики гидросамолетов), в центре величины (ц.в.).

Очевидно, что для обеспечения равновесия самолета на плаву (рис. 7.76) силы G и P должны лежать на прямой, соединяющей ц.м. и ц.в., в вертикальной продольной плоскости симметрии гидросамолета - диаметральной плоскости лодки (ДП). Очевидно также, что основная плоскость лодки (ОП) - горизонтальная плоскость, проходящая через нижнюю точку поверхности лодки перпендикулярно к диаметральной плоскости, и, соответственно, нижняя строительная горизонталь лодки (НСГ), строительная горизонталь самолета (СГС) и палуба 1 - верхняя поверхность лодки в общем случае не параллельны плоскости водной поверхности и линии соприкосновения поверхности воды с корпусом лодки гидросамолета W о L о .

Линия соприкосновения спокойной поверхности воды с корпусом лодки гидросамолета W о L о при полной взлетной массе и выключенных двигателях - грузовая ватерлиния (от голл. water - вода и lijn - линия). Грузовая ватерлиния (ГВЛ) при плавании в пресной воде не совпадает с ГВЛ при плавании в морской воде, поскольку плотность пресной речной или озерной воды ρ в =1000 кг/м 3 , плотность морской воды ρ в = 1025 кг/м 3 .
Соответственно,осадкаТ (расстояние от ГВЛ до самой нижней части лодки, характеризующее погружение лодки ниже уровня воды) при одинаковой взлетной массе гидросамолета в пресной воде будет больше, чем в морской.
Значения осадок носом и кормой определяют посадку лодки гидросамолета относительно поверхности воды - дифферент лодки (от лат. differens (differetis) - разница) - наклон ее в продольной плоскости, который измеряется углом дифферента φ 0 или разностью между осадками кормы и носа. Если разность равна нулю, говорят, что лодка "сидит на ровном киле"; если осадка кормы больше осадки носа - лодка "сидит с дифферентом на корму" (как показано на рис 7.76), если меньше - лодка "сидит с дифферентом на нос".
Остойчивость (аналог термина "устойчивость" в морской терминологии) при плавании - способность гидросамолета, отклоненного внешними возмущающими силами от положения равновесия, возвращаться в исходное положение после прекращения действия возмущающих сил.
Очевидно, что при плавании частично или вполне (полностью) погруженного в воду тела нет никаких других сил для возвращения его в положение равновесия, кроме силы тяжести G и равной ей силы поддержания Р . Следовательно, только взаимное положение этих сил определит остойчивость или неостойчивость плавающего тела, что иллюстрирует рис. 7.77.

Если центр масс тела расположен ниже центра величины (рис. 7.77,а), при отклонении от положения равновесия возникает стабилизирующий момент ΔМ = Gl , возвращающий тело в исходное положениеостойчивого равновесия .
Если центр масс тела расположен выше центра величины (рис. 7.77,в), при отклонении от положения равновесия возникает дестабилизирующий момент ΔМ = Gl , и тело не может самостоятельно возвратиться в исходное положение неостойчивого равновесия .
Если положение центра масс тела совпадает с положением центра величины (рис. 7.77,б ), тело находится в безразличном равновесии.
Следует отметить, что положение центра величины существенным образом зависит от формы погруженной части тела и угла отклонения его от исходного положения равновесия.
Остойчивость гидросамолета (как и остойчивость судна) принято определять взаимным положением центра масс и метацентра - центра кривизны линии, по которой смещается центр величины водоизмещающего тела при выведении его из равновесия.
Метацентр - от греч. meta - между, после, через - составная часть сложных слов, означающих промежуточность, следование за чем-либо, переход к чему-либо другому, перемену состояния, превращение и лат. - centrum средоточие, центр.
Различают поперечную и продольную остойчивость гидросамолета (при наклонении самолета соответственно в поперечной и продольной плоскостях).
Поперечная остойчивость. Рассмотрим случай поперечного наклонения - отклонение диаметральной плоскости лодки (ДП) от вертикали, например под воздействием порыва ветра.
Гидросамолет (рис. 7.78,а) находится на плаву в состоянии равновесия, сила тяжести G и сила поддержания Р равны, лежат в диаметральной плоскости, размер а определяет возвышение центра масс над центром величины.

От боковой составляющей порыва ветра V в (рис. 7.78,б ) возникнет кренящий момент М кр в , зависящий от скоростного напора, площади и размаха наветренной (обращенной в ту сторону, откуда дует ветер) консоли крыла, площади боковой проекции гидросамолета. Под действием этого момента самолет накренится на некоторый малый (будем считать - бесконечно малый) угол γ и новое положение лодки определит новую грузовую ватерлинию W 1 L 1 , плоскость которой наклонена на угол γ от исходной ватерлинии W о L о .
Форма подводной (водоизмещающей) части лодки изменится: объем, ограниченный в каждом поперечном сечении лодки фигурой 1 , выйдет из-под воды, а равный ему объем, ограниченный в каждом поперечном сечении лодки фигурой 2 , уйдет под воду. Таким образом, величина поддерживающей силы не изменится (Р = W ρ в g = G ) С о в точку С 1 . Точка М о пересечения двух смежных линий действия архимедовых сил при бесконечно малом угле γ между ними и является начальным метацентром .
Метацентрический радиус ρ 0 определяет начальную кривизну линии смещения центра величины лодки при крене.
Мерой поперечной остойчивости гидросамолета является значение метацентрической высоты h о = ρ о - а :
- если h о > 0 - лодка остойчива;
- если h о = 0 - равновесие безразличное;
- если h о < 0 - лодка неостойчива.
В рассмотренном примере h о < 0. Нетрудно видеть, что перпендикулярные к поверхности воды и равные силы Р и G будут составлять пару с плечом l , причем момент этой пары М кр G = Gl совпадает по направлению с возмущающим моментом М кр в и увеличивает угол крена. Таким образом, гидросамолет, показанный на рис. 7.78,б , при действии внешних возмущений не возвращается к исходному положению, т. е. не обладает поперечной остойчивостью.
Очевидно, что для обеспечения поперечной остойчивости центр масс должен находиться ниже самого низкого положения метацентра.
Большинство современных гидросамолетов выполнено по классической аэродинамической схеме с фюзеляжем - лодкой, которой придаются соответствующие формы для выполнения взлета с воды и посадки на воду, высокорасположенным крылом с установленными на нем или на лодке двигателями для максимального удаления их от водной поверхности с целью исключить при движении по воде заливание крыла водой и попадание ее в двигатели и на винты самолетов с винтомоторной силовой установкой, поэтому в большинстве случаев центр масс самолета выше метацентра (как на рис. 7.78,б ) и однолодочный гидросамолет в поперечном отношении неостойчив.
Проблемы поперечной остойчивости гидросамолета однопоплавковой или однолодочной схемы могут быть решены применением подкрыльных поплавков (рис. 7.79).

Подкрыльный поплавок 1 устанавливают на пилоне 2 по возможности ближе к концу крыла 3 .Опорные (поддерживающие) подкрыльные поплавки не касаются воды при движении гидросамолета на ровной воде 4 и обеспечивают остойчивое положение гидросамолета с углами крена 2-3° при стоянке,несущиеподкрыльные поплавки частично погружены в воду и обеспечивают стоянку без крена.
Водоизмещение поплавка выбирается таким образом, чтобы под воздействием ветра с определенной скоростью V в гидросамолет, находящийся на скате волны 5 , соответствующей предельному волнению акватории, заданному в ТЗ на проектирование, накренился на определенный угол γ . В этом случае восстанавливающий момент поплавка, определяемый поддерживающей силой поплавка Р п и расстояниемb п от диаметральной плоскости поплавка до диаметральной плоскости лодки, М п = Р п b п , должен парировать (уравновесить) кренящие моменты М кр в от ветра и М кр G от неостойчивой лодки.

Продольная остойчивость определяется такими же условиями, как и поперечная. Если под действием какого-либо внешнего возмущения гидросамолет (рис. 7.80) получит продольное наклонение от исходного положения, определяемого ватерлинией W о L о , например увеличение на угол Δφ дифферента на нос, это определит новую грузовую ватерлинию W 1 L 1 .
Объем лодки 1 выйдет из-под воды, а равный ему объем 2 уйдет под воду, при этом значение поддерживающей силы не изменится (Р = W ρ в g = G ) , однако центр величины сместится из исходного положения С 0 в точку С 1 . Точка М о * пересечения двух смежных линий действия поддерживающих сил при бесконечно малом угле Δφ между ними определит положение начального продольного метацентра .
Мера продольной остойчивости гидросамолета - продольная метацентрическая высота H о = R о - а .
Обеспечить продольную остойчивости гидросамолета проще, чем поперечную, в том смысле, что сильно развитая в длину лодка почти всегда обладает естественной продольной остойчивостью (H о > 0).
Отметим, что пикирующий момент от силы тяги двигателя, линия действия которой обычно проходит выше центра масс самолета, заглубляет носовую часть лодки, уменьшает угол начального дифферента, т. е. заставляет лодку принять некоторый дифферент на нос, что определит новую грузовую ватерлинию , которая называется "упорной" .
Гидростатические силы (силы поддержания), обеспечивающие плавучесть и остойчивость лодки в состоянии покоя, естественно, в большей или меньшей мере проявляются и в процессе движения по воде.
Весьма важной характеристикой гидросамолета, определяющей его мореходность, является способность преодолевать сопротивление воды и развивать необходимую скорость движения по воде при минимальных затратах мощности.
Гидродинамическая сила сопротивления воды движению лодки в режиме плавания определяется трением воды в пограничном слое (сопротивление трения) и распределением гидродинамического давления потока воды на лодку (сопротивление формы, связанное с образованием вихревых течений - его иногда называют водоворотным сопротивлением) и зависит от скорости движения (скоростного напора ρ в V 2 /2 ), формы и состояния поверхности лодки.
Здесь уместно напомнить, что плотность воды ρ в больше плотности воздуха на уровне моря примерно в 800 раз!
К этому сопротивлению добавляется волновое сопротивление, которое, в отличие от волнового сопротивления, связанного с необратимыми потерями энергии в скачке уплотнения при полете с закритическими скоростями (см. раздел 5.5), возникает при движении тела вблизи свободной поверхности жидкости (поверхности раздела воды и воздуха).
Волновое сопротивление - часть гидродинамического сопротивления, характеризующая затрату энергии на образование волн.
Волновое сопротивление в воде (тяжелой жидкости) возникает при движении погруженного или полупогруженного тела (поплавка, лодки) вблизи свободной поверхности жидкости (т. е. границы воды и воздуха). Движущееся тело оказывает добавочное давление на свободную поверхность жидкости, которая под влиянием собственной силы тяжести будет стремиться вернуться к исходному положению и придет в колебательное (волновое) движение. Носовая и кормовая части лодки образуют взаимодействующие между собой системы волн, оказывающие существенное влияние на сопротивление.
В режиме плавания равнодействующая сил гидродинамического сопротивления практически горизонтальна.
Форма водоизмещающей части гидросамолета (как и форма судна) должна обеспечить способность движения по воде с минимальным сопротивлением и, как следствие, с минимальными затратами мощности (ходкость судна , по морской терминологии).
При проектировании гидросамолетов (как и судов) для выбора форм и оценки гидродинамических характеристик используются результаты испытаний путем буксировки ("протаски") динамически подобных моделей в опытовых бассейнах (гидроканалах ) или в открытых акваториях.
Однако, в отличие от судна, комплекс характеристик мореходности гидросамолета значительно шире, основной из них является способность производить безопасные взлеты и посадки на взволнованной поверхности с определенной высотой волны, при этом скорости хода по воде гидросамолетов во много раз превышают скорости морских судов.
Благодаря особой форме днища лодки гидросамолета возникают гидродинамические силы, поднимающие носовую часть и вызывающие общее значительное всплытие лодки.
Следовательно, движение гидросамолета, в отличие от судна, происходит при переменном водоизмещении и угле дифферента лодки (фактически угле набегания водяного потока на днище, аналогичном углу атаки крыла). На скоростях движения по воде, близких к скорости отрыва при взлете, водоизмещение практически равно нулю - гидросамолет идет в режиме глиссирования (от франц. glisser - скользить) - скольжения по поверхности воды. Характерная особенность режима глиссирования заключается в том, что равнодействующая сил гидродинамического сопротивления воды имеет настолько большую вертикальную составляющую (гидродинамическую силу поддержания ), что лодка большей частью своего водоизмещающего объема выходит из воды и скользит по ее поверхности. Поэтому обводы (очертания наружной поверхности) лодки гидросамолета (рис. 7.81) существенно отличаются от обводов судна.

Основное отличие состоит в том, что днище (нижняя поверхность лодки, которая является основной опорной поверхностью при движении гидросамолета по воде) имеет один или несколькореданов (франц. redan - уступ), первый из которых, как правило, располагается вблизи центра масс гидросамолета, а второй в кормовой части. Прямые в плане реданы (рис. 7.81,а ) создают в полете значительно большее сопротивление, чем заостренные (стреловидные, оживальные) реданы (рис. 7.81,б ), гидродинамическое сопротивление и брызгообразование которых существенно меньше. Со временем ширина второго редана постепенно уменьшалась, межреданная часть днища стала сходиться в одной точке (рис. 7.81,в ) на корме лодки.

В процессе развития гидроавиации изменялась и форма поперечного сечения лодки (рис. 7.82). Лодки с плоским днищем (рис. 7.82,а ) и с продольными реданами (рис. 7.82,б ), слабокилеватые (т. е. с небольшим наклоном участков днища от центральной килевой линии к бортам - рис. 7.82,в ) и с вогнутым днищем (рис. 7.82,г ) постепенно уступали место килеватым лодкам с плоскокилеватым днищем (рис. 7.82,д ) или с более сложным (в частности, криволинейным) профилем килеватости (рис. 7.82,е ).
Здесь следует отметить, что гидросамолеты не имеют амортизаторов (см. раздел 7.3), способных поглощать и рассеивать энергию ударов при посадке на воду. Поскольку вода - практически несжимаемая жидкость, то сила удара о воду соизмерима с силой удара о землю. Основное назначениекилеватости - заменить собой амортизатор и при

постепенном погружении в воду клиновой (килеватой) поверхности при посадке смягчить посадочный удар, а также удары воды о днище лодки при движении на взволнованной поверхности воды.
Характерные обводы лодки современного гидросамолета представлены на рис. 7.83. Лодка имеет поперечную и продольную килеватость днища.
Поперечная килеватость лодки (или угол, образуемый килем и скулами) выбирается исходя из условий обеспечения приемлемых перегрузок на взлетно-посадочных режимах и обеспечения динамической путевой остойчивости.
Угол поперечной килеватости носовой части лодки начиная от первого редана β р н плавно увеличивается к носу лодки (на виде спереди А-А - наложенные сечения по носовой части лодки) таким образом, что формируется волнорез в носовой частим лодки, "разваливающий" встречную волну и уменьшающий волно- и брызгообразование.
Скула (линия пересечения днища и борта лодки) препятствует прилипанию воды к бортам. Для создания приемлемого волно- и брызгообразования применяют выгиб носовых скул , т. е. профилировку днища носовой части лодки по сложным криволинейным поверхностям.

Днище межреданной части лодки (на виде сзади Б-Б - наложенные сечения по кормовой части лодки) обычно плоскокилеватое - значение угла β р м постоянно. Углы поперечной килеватости на редане обычно порядка 15-30°.
Продольная килеватость лодки γ л = γ н + γ м определяется углом продольной килеватости носовой части γ н и углом продольной килеватости межреданной части γ м .

Длина, форма и продольная килеватость носовой части (γ н @ 0¸3° ), влияющие на продольную остойчивость и угол начального дифферента, выбираются такими, чтобы исключить зарывание носом и заливание палубы водой при высоких скоростях хода.
Продольная килеватость межреданной части (γ м @ 6¸9° ) выбирается так, чтобы обеспечить устойчивое глиссирование, посадку на сушу при максимально допустимом угле атаки и сход на воду (для самолета-амфибии) по существующимслипам (англ. slip , букв. - скольжение) - уходящим в воду наклонным береговым площадкам для схода амфибии на воду и выхода на берег.
При достаточной продольной килеватости межреданной части отрыв при взлете с воды может происходить "с подрывом" (увеличением угла атаки) на максимально допустимом коэффициенте подъемной силы.
Отрыв с воды при взлете осложнен тем, что кроме сил сопротивления воды движению лодки, рассмотренных выше, между днищем лодки и водой действуют силы сцепления (подсасывания), особенно в задней части лодки.
Назначение редана - уничтожить подсасывающее действие воды (подсос) при разбеге, уменьшить этим сопротивление воды, дать возможность лодке "отлипнуть&qu