Особенности кристаллического состояния полимеров. Аморфное и кристаллическое состояние вещества и материала

30.09.2019

В твердом состоянии большинство веществ имеет кристаллическое строение. В этом легко убедиться, расколов кусок вещества и рассмотрев полученный излом. Обычно на изломе (например, у сахара, серы, металлов) хорошо заметны расположенные под разными углами мелкие грани кристаллов, поблескивающие вследствие различного отражения ими света. В тех случаях, когда кристаллы очень малы, кристаллическое строение вещества можно установить при помощи микроскопа.

Каждое вещество обычно образует кристаллы совершенно определенной формы. Например, хлорид натрия кристаллизуется в форме кубов (рис. 59,а), квасцы - в форме октаэдров (рис. 59,б), нитрат натрия - в форме призм (рис. 59, в) и т. д. Кристаллическая форма - одно из характерных свойств вещества.

Классификация кристаллических форм основана на симметрии кристаллов. Различные случаи симметрии кристаллических многогранников подробно разбираются в курсах кристаллографии. Здесь укажем только, что все разнообразие кристаллических форм может быть сведено к семи группам, или кристаллическим системам, которые, в свою очередь, подразделяются на классы.

Рис. 59. Формы кристаллов: а - хлорид натрия; б - квасцы; в - нитрат натрия.

Рис. 60. Бруски, вырезанные из кристаллов каменной соли: а - в направлении, перпендикулярном граням куба; б - в направлении диагонали одной из граней куба.

Многие вещества, в частности железо, медь, алмаз, хлорид натрия, кристаллизуются в кубической системе. Простейшими формами этой системы являются куб, октаэдр, тетраэдр. Магний, цинк, лед, кварц кристаллизуются в гексагональной системе. Основные формы этой системы-шестигранные призма и бипирамида.

Природные кристаллы, а также кристаллы, получаемые искусственным путем, редко в точности соответствуют теоретическим формам. Обычно при затвердевании расплавленного вещества кристаллы срастаются вместе и потому форма каждого из них оказывается не вполне правильной. При быстром выделении вещества из раствора тоже получаются кристаллы, форма которых искажена вследствие неравномерного роста в условиях кристаллизации.

Однако как бы неравномерно ни происходило развитие кристалла, как бы ни была искажена его форма, углы, под которыми сходятся грани кристалла данного вещества, остаются одними и теми же. Это один из основных законов кристаллографии - закон постоянства гранных углов. Поэтому по величине двугранных углов в кристалле можно установить, к какой кристаллической системе и к какому классу относится данный кристалл.

Особенности кристаллических тел не ограничиваются только формой кристаллов. Хотя вещество в кристалле совершенно однородно, многие из его физических свойств - прочность, теплопроводность, отношение к свету и др. - не всегда одинаковы по различным направлениям внутри кристалла. Эта важная особенность кристаллических веществ называется анизотропией.

Вырежем, например, в различных направлениях из кубического кристалла каменной соли два одинаковой толщины бруска (рис. 60) и определим сопротивление этих брусков разрыву. Оказывается, что для разрыва второго бруска требуется сила в 2,5 раза большая, чем для разрыва первого бруска. Очевидно, что прочность кристаллов каменной соли в направлении, перпендикулярном граням куба, в 2,5 раза меньше, чем в направлении диагоналей.

Во многих кристаллах различие между прочностью по разным направлениям настолько велико, что при ударе или разламывании они раскалываются по тем плоскостям, перпендикулярно к которым прочность минимальна. Это свойство кристаллов называется спайностью. Примером проявления спайности могут служить кристаллы слюды, раскалывающейся, как известно, на тончайшие пластинки.


Кристаллическое состояние вещества, характеризуется наличием дальнего порядка в расположении частиц (атомов, . молекул). В кристаллическом состоянии существует и ближний порядок, который характеризуется постоянными координационными числами, и длинами хим. связей. Инвариантность характеристик ближнего порядка в кристаллическое состояние приводит к совпадению структурных ячеек при их трансляционном перемещении и образованию трехмерной периодичности структуры (см. . Кристаллы).

Вследствие своей максимальной упорядоченности кристаллическое состояние характеризуется минимальной внутренней энергией и является термодинамически равновесным состоянием при данных параметрах - давлении, температуре, составе (в случае твердых растворов ) и др. Строго говоря, полностью упорядоченное кристаллическое состояние реально не может быть осуществлено, приближение к нему имеет место при стремлении температуры к 0 К (т. наз. идеальный кристалл). Реальные тела в кристаллическом состоянии всегда содержат некоторое количество дефектов , нарушающих как ближний, так и дальний порядок. Особенно много наблюдается в твердых растворах, в которых отдельные частицы и их группировки статистически занимают различные положения в пространстве.

Вследствие трехмерной периодичности атомного строения основными признаками являются однородность и свойств и симметрия, которая выражается, в частности, в том, что при определенных условиях образования кристаллы приобретают форму многогранников (см. выращивание). Некоторые свойства на поверхности кристалла и вблизи от нее существенно отличны от этих свойств внутри кристалла, в частности из-за нарушения симметрии. Состав и, соответственно, свойства меняются по объему кристалла из-за неизбежного изменения состава среды по мере роста кристалла. Таким образом, однородность свойств так же, как и наличие дальнего порядка, относится к характеристикам "идеального" кристаллическое состояние

Большинство тел в кристаллическое состояние является поликристаллическими и представляет собой сростки большого числа мелких кристаллитов (зерен) - участков размером порядка 10 -1 -10 -3 мм, неправильной формы и различно ориентированных. Зерна отделены друг от друга межкристаллитными слоями, в которых нарушен порядок расположения частиц. В межкристаллитных слоях происходит также концентрирование примесей в процессе кристаллизации. Из-за случайной ориентации зерен поликристаллическое тело в целом (объем, содержащий достаточно много зерен) может быть изотропным, например полученное при кристаллических с послед. . Однако обычно в процессе и особенно пластической возникает текстура - преимуществ, ориентация кристаллических зерен в определенном направлении, приводящая к анизотропии свойств.

На однокомпонентной системы вследствие кристаллическое состояние может отвечать несколько полей, расположенных в области сравнительно низких температур и повышенных . Если имеется лишь одно поле кристаллического состояния и вещество химически не разлагается при повышении температуры, то поле кристаллическое состояние граничит с полями и газа по линиям плавления и возгонки - конденсации соотв., причем жидкость и газ (пар) могут находиться в метастабильном (переохлажденном) состоянии в поле кристаллическое состояние, тогда как кристаллическое состояние не может находиться в поле или пара, т. е. кристаллическое вещество нельзя перегреть выше температуры плавления или возгонки. Некоторые (мезогены) при нагреве переходят в жидкокристаллическое состояние (см. Жидкие кристаллы ). Если на диаграмме однокомпонентной системы имеются два и более полей кристаллического состояния, эти поля граничат по линии полиморфных превращений. Кристаллическое вещество можно перегреть или переохладить ниже температуры полиморфного превращения. В этом случае рассматриваемое кристаллическое состояние может находиться в поле других кристаллических модификации и является метастабильным.

В то время как жидкость и пар благодаря существованию критической точки на линии испарения можно непрерывно перевести друг в друга, вопрос о возможности непрерывного взаимного превращения кристаллического состояния и окончательно не решен. Для некоторых веществ можно оценить критические параметры - давление и температуру, при которых DH пл и DV пл равны нулю, т. е. кристаллическое состояние и жидкость термодинамически неразличимы. Но реально такое превращение не наблюдалось ни для одного (см. Критическое состояние ).

Вещество из кристаллическое состояние можно перевести в неупорядоченное состояние (аморфное или стеклообразное), не отвечающее минимуму свободной энергии, не только изменением параметров состояния (давления, температуры, состава), но и воздействием ионизирующего излучения или тонким измельчением. Критический размер частиц, при котором уже не имеет смысла говорить о кристаллическое состояние, примерно 1 нм, т.е. того же порядка, что и размер элементарной ячейки.

Подавляющее большинство твердых тел в природе имеет кристаллическое строение. Так, например, почти все минералы и все металлы в твердом состоянии являются кристаллами.

Характерная черта кристаллического состояния, отличающая его от жидкого и газообразного состояний, заключается в наличии анизотропии , т. е. зависимости ряда физических свойств (механических, тепловых, электрических, оптических) от направления.

Тела, свойства которых одинаковы по всем направлениям, называются изотропными . Изотропны, кроме газов и, за отдельными исключениями, всех жидкостей, также аморфные твердые тела. Последние представляют собой переохлажденные жидкости.

Причиной анизотропии кристаллов служит упорядоченное расположение частиц (атомов или молекул), из которых они построены. Упорядоченное расположение частиц проявляется в правильной внешней огранке кристаллов. Кристаллы ограничены плоскими гранями, пересекающимися под некоторыми, определенными для каждого данного рода кристаллов, углами. Раскалывание кристаллов легче происходит по определенным плоскостям, называемым плоскостями спайности.

Правильность геометрической формы и анизотропия кристаллов обычно не проявляются по той причине, что кристаллические тела встречаются, как правило, в виде поликристаллов , т. е. конгломератов множества сросшихся между собой, беспорядочно ориентированных мелких кристалликов. В поликристаллах анизотропия наблюдается только в пределах, каждого отдельно взятого кристаллика, тело же в целом вследствие беспорядочной ориентации кристалликов анизотропии не обнаруживает. Создав специальные условия кристаллизации из расплава или раствора, можно получить большие одиночные кристаллы - монокристаллы любого вещества. Монокристаллы некоторых минералов встречаются в природе в естественном состоянии.

Упорядоченность расположения атомов кристалла заключается в том, что атомы (или молекулы) размещаются в узлах геометрически правильной пространственной решетки. Весь кристалл может быть получен путем многократного повторения в трех различных направлениях одного и того же структурного элемента, называемого элементарной кристаллической ячейкой (рис. 110.1, а). Длины ребер a , b и с кристаллической ячейки называются периодами идентичности кристалла.

Кристаллическая ячейка представляет собой параллелепипед, построенный на трех векторах а , b , с , модули которых равны периодам идентичности. Этот параллелепипед, кроме ребер а, b , с, характеризуется также углами α,β и γ между ребрами (рис. 110.1, б).Величины а, b , с и α, β, γ однозначно определяют элементарную ячейку и называются ее параметрами.

Элементарную ячейку можно выбрать различными способами. Это показано на рис. 110.2 на примере плоской структуры. Облицовку стены чередующимися светлыми и темными треугольными плитками можно получить многократным повторением в двух направлениях различных ячеек (см., например, ячейки 1 , 2 и 3; стрелками указаны направления, в которых повторяются ячейки). Ячейки1 и 2 отличаются тем, что включают минимальное количество структурных элементов (по одной светлой и по одной темной плитке). Кристаллическая ячейка, включающая наименьшее число атомов, характеризующих химический состав кристаллического вещества (например, один атом кислорода и два атома водорода для кристалла льда), называется примитивной ячейкой . Однако обычно вместо примитивной выбирают элементарную ячейку с большим числом атомов, но обладающую той же симметрией, как и весь кристалл в целом. Так, изображенная на рис. 110.2 плоская структура совпадает сама с собой при повороте на 120° вокруг любой перпендикулярной к ней оси, проходящей через вершины плиток. Таким же свойством обладает элементарная ячейка 3. Ячейки 1 и 2 имеют меньшую степень симметрии: они совпадают сами с собой только при повороте на 360°.

Механические свойства тел могут существенно различаться. Например, кристаллы поваренной соли в разных направлениях обладают разной прочностью, тогда как у куска смолы прочность одинакова во всех направлениях. Оказалось, что эти различия происходят от различия внутренней структуры веществ.

Кристаллические вещества – вещества, атомы и молекулы которых образуют периодически повторяющуюся внутреннюю структуру.

Анизотропность – зависимость физических свойств вещества от направления.

· Кристаллы анизотропны.

Кристаллическая решетка – пространственная сеть связей, узлы которой совпадают с центрами атомов или молекул вещества.

· Кристаллическая решетка служит для наглядного изображения внутренней структуры кристалла.

Кристаллические вещества: металлы, минералы, кристаллы солей и др.

Аморфные (изотропные) вещества – вещества, физические свойства которых одинаковы во всех направлениях.

· В аморфных веществах кристаллической решетки нет и по своему внутреннему устройству они подобны жидкостям.

Аморфные вещества: смолы, стекло, пластмассы и др.

Дальний порядок

Исследования показали, что кристаллическая решётка имеет периодически повторяющуюся структуру.

Дальний порядок – строение вещества, при котором по любому направлению расстояние между любой парой соседних частиц одинаково.

· Идеальные кристаллические структуры обладают дальним порядком.

· При изменении условий агрегатное состояние вещества может измениться, поэтому в физике твёрдое тело – тело, имеющее кристаллическое строение и обладающее дальним порядком.

4.6.2. Типы связей в кристаллах.
Виды кристаллических структур



Типы кристаллов и кристаллических решеток изучает наука кристаллография . Геометрически кристаллические решётки представляют собой призмы или пирамиды с правильным многоугольником в основании: По типу связей частиц выделены кристаллические структуры:

1) атомная – в узлах находятся нейтральные атомы, объединяемые ковалентными связями (алмаз, графит, кремний и др.);

2) ионная – в узлах находятся положительные и отрицательные ионы, удерживаемые силами электрического взаимодействия (Na + Cl – и др.);

3) молекулярная – в узлах находятся нейтральные молекулы, между которыми действуют силы межмолекулярного взаимодействия (нафталин, твёрдый азот, сухой лед , лед и др.);

4) металлическая – в узлах находятся положительно заряженные ионы металла, между узлами движутся свободные электроны.

Плавление и кристаллизация

При нагревании аморфного тела (п.4.6) амплитуда движения его молекул возрастает, тело становится пластичным (мягким, а затем и жидким). При охлаждении подвижность молекул снижается, вещество затвердевает. При этом внутренняя структура вещества не меняется. Эти процессы сопровождаются плавным изменением температуры.

Кристаллические вещества (п.4.6.2) находятся в твёрдом состоянии, пока атомы не обладают энергией движения, достаточной для преодоления электрических сил, удерживающих кристаллическую решётку. При достаточном нагревании колебания атомов возрастают, дальний порядок и кристаллическая решётка разрушаются, твёрдое тело превращается в жидкость.

· Температура плавления зависит от вещества и повышается при увеличении внешнего давления.

· При плавлении внутренняя энергия вещества увеличивается.

Температура кристаллизации равна температуре плавления, а удельная теплотакристаллизации равна удельной теплоте плавления (п.3.1.5).

Процесс кристаллизации начинается вокруг примесей, пылинок и др. нарушений чистоты вещества, которые становятся центрами кристаллизации.

· Некоторые вещества (состоящие из удлинённых палочкообразных молекул) при определённых условиях имеют структурные свойства, промежуточные между кристаллом и жидкостью. Их называют жидкими кристаллами . При охлаждении жидкие кристаллы превращаются в твёрдые.

График фазовых переходов

Зависимость температуры Т от времени t для различных фазовых состояний вещества имеет вид:

T

– начальная (конечная) температура твердого тела;

– температура плавления (кристаллизации) вещества;

– температура парообразония (конденсации);

максимальная температура;

– теплота нагревания (охлаждения) твердого тела;

– теплота плавления (кристализации);

- теплота нагревания (охлаждения) жидкости;

– теплота парообразования (конденсации);

– теплота нагревания (охлаждения) газа.

Электромагнетизм

Многие явления природы (вспышка молнии, взаимодействия магнитов, атомов в твёрдых телах и пр.) можно объяснить только с точки зрения электромагнетизма .

Электромагнетизм – раздел физики, в котором изучаются электрические и магнитные явления .

· В электромагнетизме явления природы объясняют с помощью понятий электрического заряда (п.5.1.1.1), электрического (п.5.1.1.5) и магнитного (п.5.2.1) полей .

Электрические явления – совокупность явлений, связанных с существованием, движением и взаимодействием электрических зарядов, осуществляемым посредством электрического поля.

Магнитные явления – совокупность явлений, связанных с взаимодействиями между электрическими токами (п.5.1.2.1), между электрическими токами и магнитами и между магнитами, осуществляемыми посредством магнитного поля.

Традиционно электромагнетизм делят на два раздела:

1. Электричество – раздел электромагнетизма, в котором изучаются электрические явления.

2. Магнетизм – раздел электромагнетизма, в котором изучаются магнитные явления.

Электричество

Электростатика

Электростатика – раздел электричества, в котором изучаются взаимодействие и условия равновесия неподвижных относительно ИСО электрических зарядов.

5.1.1.1. Электрический заряд. Электромагнитные
взаимодействия. Электризация тел

Положим бумажку на стол и несколько раз с нажимом проведём по ней пластмассовой палочкой. Можно отметить, что бумажка притягивается к палочке. Значит, в результате трения они приобрели новое свойство или, как говорят, стали наэлектризованными.

Наэлектризованное тело – тело, обладающее свойствами, проявляющимися в электрических явлениях.

Необходима количественная мера свойств наэлектризованного тела.

Электрический заряд (Q; q ) – мера свойств наэлектризованных тел, проявляющихся в электрических явлениях [Q] = 1 Кл – кулон.

Взаимодействия наэлектризованных тел относят к электромагнитным взаимодействиям .

Электромагнитное взаимодействие – взаимодействие между электрически заряженными телами и (или) частицами.

Электризация – процесс сообщения телу (либо перераспределения между частями тела) электрического заряда.

· Одним из способов электризации является трение.

· Из опытов известно, что существует два вида электрических зарядов. Их условно называют положительными и отрицательными.

5.1.1.2. Взаимодействие точечных электрических зарядов.
Закон сохранения электрического заряда

Точечный заряд – заряд, расположенный на теле, размеры которого пренебрежимо малы.

С высокой степенью точности заряд, расположенный на небольшом металлическом шарике, можно считать точечным.

Из опытов известно:

1) одноимённые заряды отталкиваются, разноимённые – притягиваются;

2) наименьший (элементарный) электрический заряд, существующий в природе – заряд электрона е = Кл.

· Заряд тела q = N×е , где N – количество элементарных зарядов е в заряде q .

Электрически замкнутая система тел (ЭЗСТ) – система, тела которой не обмениваются зарядами с внешними телами.

3) Во всех ЭЗСТ выполняется закон сохранения электрического заряда : в электрически замкнутой системе тел полный электрический заряд (сумма величин положительного и отрицательного зарядов) остаётся постоянным.

Значит, электрический заряд не возникает из ничего и не исчезает бесследно и может переходить от одного тела к другому при электромагнитных взаимодействиях.

· Фундаментальный закон сохранения электрического заряда был сформулирован в 1747 г. Бенджамином Франклином (1706–1790, США).

Закон Кулона

Взаимодействие точечных зарядов можно изучать, проводя опыты с небольшими металлическими шариками, подвешенными на тонких нерастяжимых нитях.

В 1785 г. Шарль Кулон (1736–1806, Франция) установил и сформулировал закон, известный как основной закон электростатики (закон Кулона) : электрическая (кулоновская) сила F к взаимодействия двух точечных электрических зарядов q 1 и q 2 в вакууме прямо пропорциональна произведению их величин, обратно пропорциональна квадрату расстояния r между ними и направлена вдоль прямой, соединяющей эти заряды.

– коэффициент пропорциональности.

5.1.1.4. Электрическая постоянная.
Диэлектрическая проницаемость среды

В ряде случаев для упрощения расчётов k удобно представлять в виде: . Тогда .

Электрическая постоянная – коэффициент .

· Сила взаимодействия зарядов в среде меньше, чем в вакууме.

Относительная диэлектрическая проницаемость среды (e ) – величина, показывающая, во сколько раз сила взаимодействия зарядов в среде (F с) меньше, чем в вакууме ().

Тогда .

Абсолютная диэлектрическая проницаемость среды – произведение e 0 ×e .

Тема урока. Кристаллическое состояние вещества. Типы связей в кристаллах. Аморфные тела.

Цели урока:

образовательные: дать понятие кристаллических и аморфных тел твердой фазы вещества. Раскрыть их физические свойства. Выяснить различие и сходство. Обратить внимание обучающихся на диалектическое единство всех трех фаз вещества (газообразное, жидкое и твердое) и на различие их физических свойств, обусловленное переходом количественных изменений энергетических состояний молекул в качественно новые.

Развивающие : развивать умение анализировать, делать выводы, применять полученные знания на практике

Воспитательные: Воспитывать доброжелательное отношение к сокурсникам, воспитывать ответственность за порученное дело.

Тип занятия – Лекция с применением информационных технологий

Оборудование: Мультимедийный проектор, презентация.

Набор кристаллических тел (нафталин, поваренная соль, смола, металл, графит, алмаз), набор кристаллических решеток.

Ход урока

I. Орг. момент (2 мин);

План лекции

1. Симметрия и энергетика кристаллов .

2. Монокристаллы, поликристаллы. Анизотропия.

3. Аморфные тела . Свойства аморфных тел.

4. Типы связей в кристаллах и виды кристаллических структур:

а) ионная; б) атомная; в) молекулярная; г) металлическая.

5. Жидкие кристаллы. Применение

6. Применение кристаллов в профессиональной деятельности.

Минералы. Физические свойства минералов. Диагностические признаки.

II . Изучение нового материала-(65мин.)

1. Симметрия и энергетика кристаллов

Ребята, кто-то из вас читал книгу А.Е. Ферсмана «Занимательная минералогия», рассказы о самоцветах. Если нет, то я советую вам прочесть.

Минералогия в представлении Ферсмана – это наука, которой могут позавидовать науки о живых существах; «На ее основе создается самая замечательная техника, получаются металлы, извлекаются строительные камни – одним словом строится все наше хозяйство и промышленность».

В своей книге А.Е. Ферсмана пишет: «Я хочу вас увлечь, чтобы вы начали интересоваться горами и каменоломнями, рудниками, чтобы вы начали собирать коллекции минералов, чтобы вы захотели отправиться вместе с нами из города подальше, к течению реки, где высокие каменистые берега, к вершинам гор и скалистому берегу моря, туда, где лежит камень, добывают песок, или взрывают руду. Там всюду мы с вами найдем чем заняться, и в мертвых скалах, песках и камнях мы с вами научимся читать какие-то великие законы природы, которые управляют всем миром и по которым построен весь мир.

Взгляните на кристаллы и изделия из граненых самоцветов. Разве вам не захочется понять, как возникла эта красота, как образуются эти удивительные произведения природы, разве у вас не появится желание поближе познакомиться с их свойствами.

Ведь поразительные красивые кристаллы – это не только украшения, они находят разностороннее применение и в технике, быту.

Вы, конечно, слушали об алмазном бурение, о применении рубинов в часовых механизмах, в измерительных приборах, о кристаллах применяемых в полупроводниковых приборах.

А металлы – этот основной материал современной техники. Знаете ли вы, что все металлы имеют кристаллическое строение. Любой физик скажет всем твердое тело – кристалл. Почти весь мир кристалличен. В мире царит кристалл и его твердые, прямолинейные законы. – писал академик Ферсман. Давайте поближе познакомимся с основными законами кристалла.

Проблема: Какими общие свойства характерны для кристаллов.

Решение проблемы:

Посмотрите внимательно на рисунки, образцы, что можно отметить общего для кристаллов.

А) правильная многогранная форма.

Кристалл, можно разбить на множество кусочков и каждый кусочек будет кристаллом. Самое главное в кристалле не наружная его форма, а своеобразие его внутренних свойств. Обратим внимание на правильность формы кристалла – симметрию.

По выражению нашего знаменитого кристаллографа Е.С. Федорова «Кристаллы блещут симметрией».

Точки в кристаллической решетке, соответствуют более устойчивому положению равновесия частиц, твердого тела, называются узлами решетки. Узлы решетки имеют правильное расположение, которые периодически повторяются внутри кристалла.

Сделайте вывод: Кристаллы это твердые тела, атомы и молекулы которых занимают определенные, упорядочные положения в пространстве.

Следствие этого – правильная внешняя форма кристалла. (например, крупинка соли имеет плоские грани составляющие друг с другом прямые узлы). Это можно заметить рассматривая соль в лупу. Геометрически правильная форма снежинки.

2. Монокристаллы, поликристаллы. Анизотропия.

Также главным свойством кристалла, является анизотропия – зависимость физических свойств от выбранного в кристалле направления. У некоторых кристаллов наблюдается различная механическая прочность по разным направлениям. Например, кусок слюды легко расслаивается в вертикальном направлении.

Легко расслаивается в горизонтальном направлении карандаш, когда мы пишем карандашом расслоение происходит непрерывно и слои графита остаются на бумаге. Это происходит по тому, что решетка графита имеет сложную структуру, она как бы разделена на слои, которые легко сдвигаются. Когда пишем карандашом, то сдвинутые чешуйки графита ложатся на листе бумаги. Атомы располагаются в вершинах правильных шестиугольников.

Расстояние между слоями сравнительно велико, примерно в 2 раза больше, чем длина стороны шестиугольника. Поэтому связи между слоями менее прочные, чем связи внутри них.

Многие кристаллы по-разному проводят тепло и электрический ток в различных направлениях. Зависят от направления и оптические свойства. Так, кристалл кварца по-разному преломляет свет в зависимости от направления падающих на него лучей.

Существуют монокристаллы и поликристаллы. Одиночные кристаллы называются монокристаллами.

Правильное расположение частиц в узлах решетки кристалла называются дальним порядком. Опыт показал, что идеального дальнего порядка в расположении частиц твердого вещества не существует. Любые отсутствия от идеального порядка в кристалле называют дефектом.

Чаще всего одиночные кристаллы имеют очень маленькие размеры, хотя монокристаллы горного хрусталя иногда бывает величиной с человеческий рост. Твердое тело состоящее из большого числа маленьких кристаллов, называют поликристаллическим. Множество кристаллов различимы в микроскопе, поскольку эти кристаллики относительно друг друга расположены хаотично, твердое тело является изотропным , т.е. имеет одинаковые свойства по всем направлениям, хотя каждый кристаллик обладает анизотропией.

Поликристалл- металл, сплавы металлов, кусок сахар.

3. Аморфные тела. Свойства аморфных тел.

.Аморфные тела («морфе» – форма и «а» - частица имеющая смысл отрицания)

У аморфных тел нет строго порядка в расположении атомов. Только ближайшие атомы расположены в строгом порядке. Часто одно и тоже вещество может находится как в кристаллическом, так и в аморфной форме. Например SiO 2 (кварц) в кристаллической форме, так и в аморфной (кремнезем). Все аморфные тела изотропны – одинаковое физическое свойство по всем направлениям. При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твердым телам и текучесть, подобно жидкости.

Кусок смолы растекается по поверхности. При низкой температуре ведет себя подобно твердому телу, при высокой температуре – образуют текучесть, так как с ростом температуры постоянно учащаются перескоки атомов, из одного положения в другое.

4. Типы связей в кристаллах и виды кристаллических структур:

а) ионная; б) атомная; в) молекулярная; г) металлическая .

Внутренние строение кристаллов представляет собой соединение мельчайших частиц вещества – молекул и атомов - в определенном правильном порядке. Как же узнать внутренние расположение частиц, ведь они невидимы не только невооруженным глазом, но и даже в лучшем микроскопе. На помощь пришли рентгеновские лучи. Про свечение или кристаллы, можно точно составить представление о их внутреннем строении..

Таким образом, с помощью рентгеновских лучей, было установлено, что частицы атомы и молекулы имеют правильное расположение, т.е. образуют правильную кристаллическую решетку.

Точки в кристаллической решетки соответствуют наиболее устойчивому положению равновесия частиц твердого тела называемого узлами.

Различные типы кристаллов и возможные расположения узлов в пространственной решетки, изучает кристаллография. В физике кристаллические структуры рассматривают не сточки зрения геометрии, и по характеру, сил действующих между частицами, т.е. по типу связей между частицами. По характеру сил, которые действуют между частицами, находящиеся в узлах решетки различают четыре типичных кристаллических структуры:

    ионную; - молекулярную;

    атомную; - металлическую.

Выясним в чем существует важность этих структур.

Ионная – кристаллическая структура характеризуется наличием положительных и отрицательных ионов в узлах решетки.

Силами, которыми удерживают ионы в узлах такой решетки являются силы электрического притяжения и отталкивания между этим ионами. Если рассмотреть кристаллическую решетку Na + Cl - разноименно заряженные частицы – ионы в ионной решетке расположены ближе друг к друга, чем одноименно заряженное, поэтому силы притяжения преобладают над силами отталкивания. Этим обусловлено значение прочности кристаллов с ионной решеткой. При плавление из ионной кристаллической решетки в расплав переходят ионы, которые являются свободными носителями. Поэтому такие расплавы являются хорошими носителями от тока.

Атомная – кристаллическая структура характеризуется наличием нейтральных атомов в узлах решетки между которыми существует ковалентная связь. Ковалентной связью , такая связь при которой каждые два соседние атома удерживаются рядом силами притяжения, возникающими при взаимном обмене двумя валентными электронами.

Имеются много твердых веществ с атомной решеткой: алмаз, кварц, германий, кремний. Рассмотрим схему изображения алмазной решетки. Ковалентная связь создает весьма прочные кристаллы, поэтому кристалл обладает большой механической прочностью и плавится при большой температуре.

Молекулярная кристаллическая структура – отличается пространственной решеткой, в узлах которой находятся нейтралы молекулы вещества.

Силами, удерживающими молекулы в узлах этой решетки, являются силы межмолекулярного воздействия, эти силы слабые, твердые вещества с молекулярной решеткой легко разрушаются при механическом воздействии и имеют низкую температуру плавления. Примерами веществ с молекулярной решеткой, являются нафталин, твердый азот.

Металлическая кристаллическая структура - отличается наличием в узлах решетки положительно заряженных ионов металла. У атомов всех металлов валентные электроны очень слабо связаны с атомами. Электронные облака таких атомов перекрывают сразу много атомов в кристаллической решетки (т.е. двигаются без препятственно по всему кристаллу). Каждый атом теряет свои электроны, и атомы превращаются в положительно заряженные по всему кристаллу (большой тепло варов, электропроводы).

Важными механическими свойствами материалов, которые приходится учитывать в машиностроении, является хрупкость и твердость. На практике встречаются материалы, которые при небольших нагрузках деформируются, а при больших нагрузках разрушаются, прежде чем из них, появится остаток деформации. Такие материалы называются хрупкими . Хрупкие материалы очень чувствительны к ударной нагрузке. При резком ударе разрушаются. Твердость материала можно определить разными способами. Обычно более твердым является такой материал который оставляет царапины на другом материале.

5. Жидкие кристаллы. Применение.

Жи́дкие криста́ллы - это фазовое состояние, в которое переходят некоторые вещества при определенных условиях (температура, давление, концентрация в растворе). Жидкие кристаллы обладают одновременно свойствами как жидкостей (текучесть), так и кристаллов (анизотропия). По структуре ЖК представляют собой вязкие жидкости, состоящие из молекул вытянутой или дискообразной формы, определённым образом упорядоченных во всем объёме этой жидкости. Наиболее характерным свойством ЖК является их способность изменять ориентацию молекул под воздействием электрических полей, что открывает широкие возможности для применения их в промышленности.

Одно из важных направлений использования жидких кристаллов - термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций. Например, жидкие кристаллы в виде плёнки наносят на транзисторы, интегральные схемы и печатные платы электронных схем. Неисправные элементы - сильно нагретые или холодные, неработающие - сразу заметны по ярким цветовым пятнам. Новые возможности получили врачи: жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.

С помощью жидких кристаллов обнаруживают пары́ вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения. На основе жидких кристаллов созданы измерители давления, детекторы ультразвука. Но самая многообещающая область применения жидкокристаллических веществ - информационная техника. От первых индикаторов, знакомых всем по электронным часам, до цветных телевизоров с жидкокристаллическим экраном размером с почтовую открытку прошло лишь несколько лет. Такие телевизоры дают изображение весьма высокого качества, потребляя меньшее количество энергии.

6. Минералы. Физические свойства минералов. Диагностические признаки.

Минералы – однородные по составу и строению кристаллические вещества, образовавшиеся в результате природных физико – химических процессов и являющиеся составными частями горных пород и руд. Физические свойства минералов зависят от химического состава, типа кристаллической структуры, имеют большое практическое значение и важны для их диагностики.

Внешний вид минералов различен. По внешней форме можно выделить изометричес-кие (равномерно развитые), вытянутые, шестоватые, плоские, таблитчатые и др.

Минералы различают по общему виду их кристаллов, зависящему от преобладающей простой формы. Облик минералов может быть кубическим (флюорит, пирит, галит), октаэдрическим (алмаз, магнетит), тетраэдрическим (сфалерит, тетраэдрит), призматическим (диопсид, скаполит, берилл), дипирамидальным (шеелит, цркон) и пр.

Морфология минералов зависит от условий их образования. Свободно растущие минералы обладают более развитой формой. Различия в условиях образования минералов и помехи при кристаллизации приводят к образованию минералов необычного вида. Совокупность минералов одного и того же происхождения называют агрегатом. Наиболее распространены зернистые агрегаты, ими сложены все кристаллические горные породы. Зернистые агрегаты различаются по величине зерен: крупнозернистые, среднезернистые, мелкозернистые; также выделяют равномернозернистые и неравномернозернистые. Землистые агрегаты характерны для порошковатых, рыхлых минералов и осадочных горных пород – глин, бокситов и др. Различают шестоватые, волокнистые, пластинчатые, чешуйчатые и др. агрегаты. Помимо этих форм выделения минералов распространены и другие агрегаты:

Друзы (щетки) – незакономерные сростка кристаллов;

Конкреции – имеют вид желваков, шаровидных стяжений, со скорлуповатым или радиальнолучистым строением;

Секреции – форма отложений минерального вещества в полостях, при росте минерала от периферии к центру (жеоды, миндалины);

Дендриты –формы ветвящегося древовидного строения, образующиеся при проникновении растворов по тонким волосным трещинам породы;

Оолиты – агрегаты мелких шариков, имеющие в разрезе концентрическое (реже радиальнолучистое) строение, образующиеся в водной среде;

Натеки и почковидные агрегаты – поверхностные образования, могут иметь форму сосулек, растущих сверху (сталактиты) и снизу (сталагмиты); а также налеты, выцветы, корочки.

Для минералов характерны явления полиморфизма и изоморфизма.

Изоморфизм – явление взаимного замещения атомов в узлах кристаллической решетки без нарушения ее строения.

Результатом изоморфизма являются изоморфные смеси. Многие минералы часто содержат незначительные примеси различных химических элементов, которые обусловлены закономерным вхождением в кристаллическую решетку минерала – это изоморфные примеси . С примесями связано резкое изменение электрических свойств, появление окраски, люминесценции, хотя их количество ничтожно мало, и они не входят в химическую формулу минерала.

Изоморфные смеси часто образуют непрерывные изоморфные ряды от одного конечного числа к другому. Такой изоморфизм называется совершенным или неограничеснным. Он характерен для изоморфных смесей, которые возникают при любых соотношениях компонентов (например, в плагиоклазах может присутствовать как альбитовая, так и анортитовая составляющая в различных соотношениях).

В тех случаях, когда изоморфный ряд при определенных соотношениях компонентов разрывается с образованием новых минералов, изоморфизм называется несовершенным или ограниченным (например, щелочные полевые шпаты могут распадаться с образованием таких минералов, как ортоклаз, санидин и микроклин ).

Ограниченные изоморфные смеси при изменении термодинамических условий (особенно при понижении температуры) могут распадаться на составные компоненты – это распад твердых растворов. Так, например, при высокой температуре щелочные полевые шпаты образуют непрерывный изоморфный ряд. При понижении температуры они распадаются на две фазы с преобладанием K и Na. В пределах каждой фазы возникают взаимные прорастания – пертиты и антипертиты .

Изменчивость химического состава в изоморфном ряду вызывает и изменение их физических свойств: твердости, плотности, показателей преломления.

Различают два вида изоморфизма:

- изовалентный – взаимозамещаются ионы имеющие одинаковую валентность;

- гетеровалентный – замещение ионов разных валентностей.

По степени совершенства изоморфных замещений выделяют совершенный (полный) изоморфизм – замещение одного элемента другим происходит в пределах до 100% и несовершенный (ограниченный) – замещение элементов, частичное от сотых долей до нескольких процентов.

Факторы изоморфизма:

    Близость размерных параметров изоморфных компонентов – объема элементарной ячейки и атомных радиусов ионов.

    Сходство характера химической связи. Минералы с ионным типом химической связи не образуют взаимозамещений с минералами, характеризующимися ковалентной связью. Это изоструктурные минералы.

Полиморфизм – явление при котором одно и тоже по составу вещество может иметь различные структуры и кристаллизоваться в различных видах симметрии. Несмотря на одинаковый состав, свойства этих минералов будут различными.

Наряду с полиморфизмом среди минералов наблюдаются явления сдвигов или поворотов отдельных структурных элементов (цепочек, слоев) относительно друг друга при полном сохранении структуры внутри этих элементов. Такое явление получило название политипия.

Данные виды кристаллов называют полиморфными и политипными модификациями.
Факторами возникновения таких модификаций являются:

Температура;

Давление;

Двойникование явление закономерного срастания кристаллов.
Двойники срастания имеют одну общую плоскость, которая на поверхности выражена двойниковым швом

    Двойники прорастания имеют общую двойниковую плоскость

    Простые двойники – срастание 2-х кристаллов

    Сложные двойники – срастание более 2-х кристаллов

    Полисинтетические двойники образуют параллельные слои (пластинки) кристаллического вещества.

Физические свойства минералов определяются взаимодействием между структурой и химическим составом. Они влияют на внешний вид минерала, на его физические характеристики, в том числе и механические.

1. Плотность минерала определяется как величина массы, занимающей единицу объема, и выражается в граммах на кубический сантиметр (г/см 3). Это фундаментальное физическое свойство, которое изменяется в зависимости, как от химического состава, так и от структуры.


2. Твердость – сопротивление материала резанью, царапанью или вдавливанию.

Минералы

Шкала Мооса

Метод микровдавливания (кг/мм 2)

Тальк

Гипс

Кальцит

Флюорит

Апатит

Ортоклаз

Кварц

1120

Топаз

1427

Корунд

2060

Алмаз

10 060

3. Спайность – способность минерала раскалываться при ударе или другом механическом воздействии по определенным кристаллографическим плоскостям.
Степень совершенства проявления спайности исследуемого минерала определяется путем ее сопоставления с данными следующей 5-ступенчатой шкалы:

    Спайность весьма совершенная проявляется в способности кристалла расщепляться на тонкие пластинки. Получить излом иначе, чем по спайности в этих кристаллах чрезвычайно трудно (слюда, молибденит)

    Спайность совершенная проявляется при ударе молотком в виде выколов, представляющих собой уменьшенное подобие разбиваемого кристалла. Так, при разбивании галита получают мелкие правильные кубики, при дроблении кальцита – правильные ромбоэдры (топаз, хромдиопсид, флюорит, барит).

    Спайность средняя характеризуется тем, что на обломках кристаллов отчетливо наблюдаются как плоскости спайности, так и неровные изломы по случайным направлениям (полевые шпаты, пироксены).

    Спайность несовершенная обнаруживается с трудом при тщательном осмотре неровной поверхности скола минерала (апатит, касситерит).

    Весьма несовершенная, т.е. практически отсутствует. Минералы, обладающие подобным типом спайности имеют мелкораковистый или раковистый излом (корунд, кварц).

4. Отдельность – способность минерала раскалываться вдоль структурно-ослабленных плоскостей, возникающих вследствие двойникования, дефектов роста, включений. В отличие от спайности, где раскалывание происходит вдоль определенных плоскостей может произойти в любом месте, отдельность возникает лишь в определенных местах и проявляется не у всех образцов (типично для корунда, гематита, некоторых пироксенов). Практическое значение отдельности имеют при обогащении (например, при отделении флюорита от кварца), и при огранке необходимо внимательно просматривать прозрачные камни, их возможные внутренние дефекты, во избежании образования направленных трещин и раскалывания.

5.Излом.

Минералы, разрушающиеся не по спайности, диагностируются по типу излома: неровный, раковистый, занозистый, землистый, крючковатый, зернистый и другие.

Наиболее распространен – раковистый излом. Минерал при ударе раскалывается по вогнутым поверхностям с характерными гребнями, располагающимися приблизительно концентрически вокруг места удара, причем вся поверхность напоминает створку раковины моллюска. Такой излом наблюдается у стекол и наиболее ярко проявляется у вулканического стекла – обсидиана. Раковистый излом легко дает скрытокристаллический кварц, наблюдается у яснокристаллического кварца и оливина.

Занозистый излом применяется к поверхностям с небольшими, но острыми и зазубренными неровностями.

6. Прочность – способность минерала реагировать на удар, раздавливание, разрезание и изгиб.

Самородные металлы -- медь, серебро, золото – могут быть сплющены при ударе молотка. Такое свойство называется ковкостью. Нож на поверхности минералов, обладающих ковкостью, оставляет блестящий след.

Однако большинство минералов являются хрупкими , и при легких ударах или надавливании крошатся. Нагрузка, при которой появляется первая видимая трещина, называется «числом хрупкости».


7. Электрические свойства.

Электропроводностью называют способность минерала проводить электричество. Электропроводность отражает тип химических связей, особенности химического состава, структуры и дефектности, т.е. электронное строение кристалла (расположение и взаимодействие атомов).

8. Магнитные свойства.

В соответствии с поведением в магнитном поле все кристаллические вещества делятся на следующие категории: диамагнитные, парамагнитные, ферромагнитные, антиферромагнитные и ферримагнитные.

Диамагнитные вещества имеют небольшое отрицательное значение Х и слабо отталкиваются внешним магнитным полем.

Парамагнитные вещества характеризуются небольшим положите-льным значением и слабо притягиваются полем.

При отсутствии внешнего поля ни диамагнитные, ни парамагнитные вещества не сохраняют никакого магнитного момента.

Ферромагнитные вещества обладают магнитным моментом даже при отсутствии окружающего поля. Они сильно притягиваются даже слабым магнитным полем и остаются постоянно намагниченными.

III . Закрепление материала – (20 мин.)

1. Составить блок-схему;

2. Заполнить таблицу (систематизация материала)

Параметры кристаллической структуры

Типы связей

Ионная

Атомная

Молекулярная

Металлическая

Пространственная решетка

Частицы, составляющие кристалл

Характер связей

3.Тестовые задания.

1. Наука о кристаллах и кристаллическом веществе, их строении, свойствах и

процессах образования - …

1. Геология

2. Кристаллография

3. Петрография

4 Стратиграфия

5. Минералогия

2. Особенность кристаллических веществ:

1. Упорядоченное расположение слагающих их атомов, ионов или молекул.

2. Редко упорядоченное расположение слагающих их атомов, ионов или молекул.

3. Неупорядоченное расположение слагающих их атомов, ионов или молекул.

4. Независимое расположение слагающих их атомов, ионов или молекул.

4. Соответствие между минералом и типом (классом), с учетом химического состава:

Минерал

Класс минералов

    графит

    силикаты

    галенит

    самородные элементы

    лимонит

    сульфиды

    нефелин

    гидрооксиды

5. Какой из видов метаморфизма протекает на больших глубинах в результате совместного воздействия на горные породы высокой температуры, давления, послемагматических растворов:

1. термальный

2. динамометаморфизм

3. контактовый

4. региональный

5. регрессивный

6. Какие из предложенных форм кристалла относятся к низшей, средней и высшей сингониям:

    триклинная

    моноклинная

    тригональная,

    тетрагональная

    гексагональная

    ромбическая

    кубическая.

7. Определить, для каких минералов какое явление характерно.

Сера

Графит

Ортоклаз

Полиморфизм.

Оливин

Алмаз

Арагонит

Корунд

Альбит

Гипс

Кварц

Золото

Изоморфизм.

Форстерит

Халцедон

Анортит

8. Определить, какие формы образования характерны для предложенных минералов.

Кварц

Друзы

Фосфорит

Кальцит

Конкреции

Марказит

Топаз

Секреции

Эффузивные ГП

Пирит

Дендриты

Арагонит

Медь самородная

Оолиты

Боксит

Малахит

Почковидные агрегаты

Лимонит

Халцедон

Корунд

9. Какие из минералов относятся к минералам глин:

1. каолинит 5. андалузит

2. галлуазит 6. арагонит

3. монтмориллонит 7. минералы слюд

4. нонтрон

10. Какие из минералов относятся к классу «силикаты»

1. барит

9. галит

2. роговая обманка

10. ортоклаз

3. малахит

11. магнезит

4. нефелин

12. оливин

5. гипс

13. опал

6. кордиерит

14. волластонит

7. доломит

15. хромит

8. тальк

16. иллит

IV . Дом задание (3мин.) Решить исследовательскую задачу; вырастить кристалл поваренной соли или медного купороса и объяснить процесс выращивания кристаллов.