Звезды — карлики Галактики (8 фото). Карликовая галактика в созвездии скульптор - скромный сосед млечного пути

22.09.2019

Международная группа астрономов, среди которых был Игорь Караченцев из Специальной астрофизической обсерватории РАН, изучила карликовую галактику KDG215 и обнаружила, что основная часть звезд в ней сформировалась за последний миллиард лет, в то время как в большинстве известных галактик пик звездообразования случился десяток миллиардов лет назад. KDG215 - одна из самых «молодых» по своему составу галактик, что указывает не необычность процессов ее эволюции. Соответствующая статья направлена на публикацию в Astrophysical Journal Letters , а пока что с текстом работы можно ознакомиться на сервере препринтов Корнелльского университета.

Детали того, как именно галактики начинают быстро и в больших количествах образовывать звезды, остаются не вполне ясными. Ситуация осложнена тем, что интенсивнее всего галактики «рожали» новые звезды 10 миллиардов лет назад, а сегодня этот процесс идет намного медленнее. Особенно сложная ситуация - для карликовых галактик, которые удалены от земных наблюдателей и зачастую довольно тусклы.

Астрономы изучили карликовую галактику KDG215 в 4,83 мегапарсека от нас (примерно 15,7 миллиона световых лет). Она, с одной стороны, сравнительно близка и потому удобна для наблюдения, а с другой - обладает рядом крайне необычных черт, которые позволяли ученым надеяться и на необычные результаты при ее исследовании. KDG215 крайне тусклая - это одна из самых тусклых галактик на таком удалении, а текущая скорость образования новых звезд в ней равна нулю.

Исследователи попытались проследить эволюцию звездообразования в этой галактике, обратившись к архиву снимков космического телескопа «Хаббл». Для этого они проанализировали спектры излучения галактики и выяснили, каков возраст основной популяции звезд в ней. Оказалось, что его средние значения экстремально низки: по расчетам, около миллиарда лет назад в галактике произошел резкий всплеск звездообразования. По самым консервативным оценкам, всего 1,25 миллиарда лет назад 30 процентов всех звезд в KDG215 еще не существовало, тогда как в остальных известных галактиках в это же время существовало уже не менее 90 процентов звезд. Более того, по менее консервативной оценке результатов расчетов, 1,25 миллиарда лет назад не существовало 66 процентов всех звезд галактики KDG215. Это делает ее экстремально молодой в плане среднего возраста ее звездного населения: хотя авторы и проводят параллели с парой других карликовых галактик, однако и там не менее половины всех звезд образовалось уже 4-7 миллиардов лет назад, а вовсе не в последний миллиард лет, как, возможно, обстоит дело в KDG215.

Исследователи взяли соседние с KDG215 галактики в кубе со стороной в шесть мегапарсеков (порядка 20 миллионов световых лет) и обнаружили, что не более нескольких миллиардов лет назад она могла пройти весьма близко к галактике Черный глаз (M64).

Это достаточно необычный объект, состоящий из двух слившихся галактик, причем периферия ее вращается в одну сторону, а газопылевой диск в центре галактики - в другую. Как отмечают исследователи, столкновение с газом из M64 могло привести к резкому повышению плотности облаков водорода в KDG215 и, соответственно, вспышке звездообразования. Дальнейшее изучение этого объекта способно прояснить детали процессов массового образования новых звезд в галактиках.

Мессье 32, или М32, относится к типу карликовых галактик эллиптической формы. Расположена в созвездии Андромеды. М32 обладает видимой величиной в 8,1 с угловым размером – 8 х 6 угловых минут. Галактика удалена от нашей планеты на 2,9 млн световых лет. По данным Equinox 2000, выведены следующие координаты: прямое восхождение 0 ч. 42,8 мин.; склонение +40 ° 52′. Благодаря этому галактику можно увидеть на протяжении всей осени.

Мессье 32 относится к двум эллиптическим галактикам спутников Великой Андромеды, которые можно наблюдать на предоставленных изображениях. По нижней кромке объекта М31 галактика М32 является самой близкой галактикой, в то время как объект М110 – самая отдаленная галактика по правой верхней кромке. М31 – большая галактика Андромеды, представлена ярким небесным объектом, допустимым для наблюдений невооруженным глазом. Мессье 31, Мессье 32 и Мессье 110 относятся к Местной группе галактик. В нее входят также галактика Треугольника и Млечный Путь.

На предоставленных изображениях видны несжатые фотографии всех трех объектов – М31, М32 и М110. Все фото были сделаны при помощи астрографа Takahashi E-180. Рядом находится изображение трехкратного увеличения центра галактики Мессье 32.

Объект был включен в каталог Мессье, однако его обнаружил французский ученый Ле Жантиль в 1749 году. Опираясь на данные передовых исследователей 2010 года, можно вычислить примерные данные об этой галактике. Расстояние от Земли до Мессье 32 составляет 2,57 млн световых лет, примерная масса варьируется в пределах 3000000000 масс Солнца, а диаметр достигает отметки в 6500 световых лет.

Наблюдения

М32 относится к малым галактикам, но имеет яркую эллиптическую форму. Когда любители рассматривают Туманности Андромеды, именно данный объект покажется им странным. Даже самый обычный телескоп покажет особенности диффузной природы галактики. Она находится по направлению в полградуса на юг от центра галактики М31. Если рассматривать М32 в среднего качества телескоп, можно увидеть звездообразное ядро и компактное, плавно спадающее по яркости овальное гало.

Соседствующие объекты из каталога Мессье

Первый сосед галактики М32 – его физический спутник Туманность Андромеды. Это спиральная сверхгигантская галактика. Второй соседствующей галактикой является эллиптическая М110, а третьей – М31, спутник, который находится по другую сторону от объекта Мессье 32.

Благодаря Карликовой галактике можно увидеть шаровое скопление G156. Оно принадлежит объекту М31. Лучшим инструментом для наблюдения послужит телескоп с апертурой в 400 мм.

Описание Мессье 32 в каталоге

Август 1764 года

Ниже пояса Андромеды на несколько минут располагается небольшая беззвездная туманность. В сравнении с поясом эта небольшая туманность имеет более тусклый свет. Ее обнаружил Ле Жантиль 29 октября 1749 года, а в 1757 году ее увидел Мессье.

Технические детали фотографии Мессье 32

    Объект: М32

    Другие обозначения: NGC 221

    Тип объекта: Карликовая эллиптическая галактика

    Позиция: Астрономическая обсерватория Бифрост

    Монтировка: Astro-Physics 1200GTO

    Телескоп: Гиперболический астрограф TakahashiEpsilon 180

    Камера : Canon EOS 550D (Rebel T2i) (светофильтрBaader UV/IR filter)

    Экспозиция: 8 x 300s, f/2.8, ISO 800

    Оригинальный размер фотографии: 3454 × 5179 pixels (17.9 MP); 11.5″ x 17.3″ @ 300 dpi

Карликовые галактики могут быть очень маленькими, но они обладают феноменальной мощностью, которая способна рождать новые звезды. Новые наблюдения с помощью космического телескопа Хаббл показали, что процесс звездообразования в карликовых галактиках играет большую роль в ранней вселенной, чем это принято считать сейчас.

И хотя галактики по всей вселенной до сих пор продолжают формировать новые звезды, большинство их было образовано между двумя и шестью миллиардами лет после Большого Взрыва. Изучение этой ранней эпохи истории вселенной является ключевым моментом, если мы хотим понять как появились первые звезды и как вырастал и развивались первые галактики.

На этом снимке показан участок неба с отмеченными карликовыми галактиками в которых наблюдаются вспышки звездообразования. Снимок получен в рамках программы GOODS (Great Observatories Origins Deep Survey) и демонстрирует только один кадр со всего обзора. Источник: NASA, ESA, the GOODS Team and M. Giavalisco (STScI/University of Massachusetts)

Новое исследование, выполненное с помощью Хаббла и его прибора Wide Field Camera 3 (WFC3) позволило астрономам сделать шаг вперед в понимании той эры, изучив различные виды карликовых галактик ранней вселенной и, в частности, выбрав из них только те, с явными процессами активного звездообразования. Подобные галактики принято называть галактиками со вспышками звездообразования. В таких объектах новые звезды формируются значительно быстрее обычного значения в других галактиках. Предыдущие изучения сосредотачивались в основном на анализе галактик со средней и высокой массой и не учитывали того огромного числа карликовых галактик, которые существовали в эту активную эпоху. Но вина здесь не столько на ученых, которые не хотели исследовать карликовые галактики. Скорее всего это связано с невозможностью увидеть эти маленькие объекты, поскольку они находятся от нас очень далеко. До недавнего времени астрономы могли наблюдать малые галактики на меньших расстояниях или большие галактики на больших расстояниях.

Однако сейчас, с использованием гризмы, астрономы смогли вглядеться в карликовые низкомассовые галактики в отдаленной вселенной и учесть вклад их вспышек звездообразования, аппроксимировав информацию на возможное число существовавших тогда малых галактик. Гризма – это объективная призма, комбинация призмы и дифракционной решётки, которая пропускает свет не смещая его спектр. Буква “Г” в названии от grating (решётка).

“Мы всегда предполагали, что карликовые галактики со вспышками звездообразования будут существенно влиять на процессы рождения новых звезд в молодой вселенной, но это – первый раз, когда мы в состоянии измерить тот эффект, которым они фактически обладают. И, по всей видимости, они играли существенную, если не ключевую роль”, – Хаким Атек из швейцарского Политехнического университета.

“Эти галактики формируют звезды так быстро, что они могли фактически удвоить всю свою звездную массу всего через 150 миллионов лет. Для сравнения, показатели звездной массы для обычных галактик удваиваются в среднем за 1-3 миллиарда лет”, – добавляет соавтор работы Жан-Поль Кнейб.

Снимок галактик в режиме гризмы на примере камеры Wide Field Camera 3, установленной на Хаббле и работающей в этом режиме спектроскопии. Протяженные радужные линии есть ни что иное как галактики, попавшие в объектив, но в режиме гризмы они представлены в виде радужного спектра. Благодаря этому ученые в состоянии оценивать химический состав космических объектов.

Карликовая галактика - небольшая , состоящая из нескольких миллиардов (что очень мало по сравнению, например, с нашей галактикой, насчитывающей около 200-400 миллиардов звёзд). К карликовым относят галактики со светимостью меньше 10 9 L ☉ (примерно в 100 раз меньше светимости ), что примерно соответствует −16 m абсолютной звёздной величине. Большое Магелланово Облако, включающее 30 млрд звёзд, иногда классифицируется как карликовая галактика, в то время как другие рассматривают её как полноценную галактику, движущуюся вокруг Млечного Пути.

Очень сильно разнятся карликовые галактики по поверхностной яркости. Если обычные галактики имеют среднюю поверхностную яркость примерно равную яркости ночного неба, то карликовые галактики отличаются друг от друга по своей поверхностной яркости более чем на 10 m .

Открытие карликовых галактик

Если не считать галактики-спутники Туманности Андромеды M 32 и NGC 205, которые занимают пограничное положение между карликовыми и нормальными галактиками, первые карликовые галактики были обнаружены Х. Шепли в конце 1930-х годов, при проведении обзора неба в окрестности Южного полюса мира для статистического исследования галактик на обсерватории Гарвардского университета в Южной Африке. Сначала Шепли обнаружил неизвестное ранее скопление звезд в созвездии Скульптор, содержащее около 10 тыс. звезд 18-19,5 m . Вскоре было обнаружено подобное скопление в созвездии Печь. После того, как для исследования этих скоплений задействовали 2,5 м телескоп обсерватории Маунт-Вилсон, в них удалось найти цефеиды и определить расстояния. Оказалось, что оба неизвестных скопления расположены вне пределов нашей галактики, то есть представляют собой новый тип галактик низкой поверхностной яркости.

Открытия карликовых галактик стали массовыми после того как в 1950-х годах был выполнен паломарский обзор неба с помощью 120-сантиметр камеры Шмидта на обсерватории Маунт-Паломар. Оказалось, что карликовые галактики - это самые распространённые галактики во .

Местные карлики

В Местной группе находится очень много карликовых галактик: это маленькие галактики, часто вращающиеся по орбите вокруг крупных галактик, таких как Млечный Путь, Андромеда и Галактика Треугольника. Обнаружено 14 карликовых галактик, вращающихся вокруг нашей Галактики. Не исключено, что шаровое скопление Омега Центавра - это ядро захваченной в прошлом карликовой галактики.

Морфология

Существует несколько основных типов карликовых галактик:

  • Карликовая эллиптическая галактика (dE ) - похожа на
    • Карликовая сфероидальная галактика (dSph ) - подтип dE , отличающийся особенно низкой поверхностной яркостью
  • Карликовая неправильная галактика (dIr ) - подобна , имеет клочковатую структуру
  • Карликовая голубая компактная галактика (dBCG или BCD ) - имеет признаки активного звездообразования
  • Ультракомпактные карликовые галактики (UCD ) - класс очень компактных галактик, содержащих порядка 10 8 звёзд при характерном поперечном размере около 50 пк. Предположительно, эти галактики являются плотными остатками (ядрами) карликовых эллиптических галактик, пролетевших сквозь центральные части богатых . Ультракомпактные галактики были обнаружены в скоплениях галактик в Деве, Печи, Волосах Вероники, Абель 1689 и др.
  • Карликовая спиральная галактика - аналог , но, в отличие от нормальных галактик, встречается чрезвычайно редко

Галактики-хоббиты

Недавно придуманный термин Галактики-хоббиты было решено использовать для обозначения галактик, которые меньше и тусклее чем карликовые галактики.

Проблема нехватки карликовых галактик

Проблема дефицита карликовых галактик (также известная как “проблема исчезнувших карликовых галактик-спутников”). Суть её в том, что число карликовых галактик (по отношению к числу обычных галактик) на целый порядок меньше числа, которое должно быть согласно моделированию по иерархическому распределению структур и общей космологии.

Есть два возможных решения этой проблемы:

  1. карликовые галактики разрушаются приливными силами более крупных галактик;
  2. карликовые галактики просто не видны, так как их тёмная материя не в состоянии привлечь достаточное количество барионной материи, чтобы они стали видимыми.

Второе решение частично подтверждается недавним (2007 год) открытием обсерваторией Кека восьми ультра-тусклых карликовых галактик (галактик-хоббитов) – спутников Млечного пути. Шесть из них на 99.9% состоят из темной материи (соотношение “массы к свету” составляет около 1000).

Подробное исследование таких галактик и особенно относительных скоростей отдельных звезд в них, позволила астрономам предположить, что мощное ультрафиолетовое излучение гигантских молодых звезд в своё время “выдуло” из таких галактик большую часть (поэтому там мало звезд), но оставило тёмную материю, которая именно поэтому сейчас преобладает. Некоторые из подобных тусклых карликовых галактик с подавляющим преобладанием тёмной материи астрономы предлагают искать непрямыми наблюдениями: по “кильватерному следу” в межгалактическом газе, т.е. по притяжению струй газа к этой “невидимой” галактике.



Исследование учёных показывает, насколько сильно на самом деле распространен этот тип звезд в нашей галактике и какое активное участие они принимают в формировании новых звезд.

Цифры показывают, что на 2 -3 звезды других классов приходится как минимум 1 коричневый карлик.

Данный тип космических объектов явно выделяется на фоне остальных.

Они слишком большие и горячие (в 15 -80 раз массивнее нашего Юпитера), чтобы их можно было классифицировать как планеты, но при этом слишком меленькие, чтобы являться полноценными звездами — у них не хватает массы для поддержания стабильного синтеза водорода в ядре.

Тем не менее коричневые карлики изначально формируются так же, как обычные звезды, поэтому их нередко называют неудавшимися звездами.

Eщё в 2013 году астрономы начали подозревать, что коричневые карлики являются довольно частым явлением для нашей галактики, подсчитав приблизительное их количество в районе 70 миллиардов.

Однако новые данные, представленные на конференции National Astronomy M eeting, проходившей на днях в английском Университете Халла, говорят о том, что подобных космических объектов в нашей галактике может присутствовать около 100 миллиардов.

Если учесть, что весь Млечный Путь может содержать по примерным оценкам до 400 миллиардов звезд, то количество коричневых карликов одновременно впечатляет и разочаровывает.

Для уточнения результатов астрономы провели исследование более тысячи коричневых карликов, расположенных в радиусе не более 1500 световых лет. Так как звезды подобного класса весьма тусклые, наблюдение за ними на более дальних дистанциях представляется крайне сложным, если не сказать невозможным занятием.

Большинство из известных нам коричневых карликов были обнаружены в областях формирования новых звезд, известных как скопления.

Одним из таких скоплений является объект NGC 133 , в котором содержится практически столько же коричневых карликов, сколько и обычных звезд.

Это показалось весьма странным для Алекса Шольца из Сент-Эндрюсского университета и его коллеги Коральки Мужич из Лиссабонского университета. Для более детального понимания частоты появления на свет коричневых карликов внутри звездных скоплений различной плотности исследователи решили поискать более удаленные карлики в более плотном звездном скоплении RC W38 .

Для возможности рассмотреть далекое скопление, расположенное примерно в 5000 световых годах от нас, астрономы использовали камеру NAC O с адаптивной оптикой, установленной на Очень большом телескопе Европейской южной обсерватории.

Как и рамках предыдущих наблюдений, в этот раз учёные тоже обнаружили, что численность коричневых карликов этого скопления составляет практически половину от общего числа находящихся в нем звезд, что, в свою очередь, говорит о том, что частота рождения коричневых карликов совсем не зависит от самого состава звездных скоплений.

« ... Мы обнаружили большое число коричневых карликов в этих скоплениях. Выходит, что независимо от типа скопления, подобный класс звезд встречается довольно часто. А так как коричневые карлики формируются вместе с другими звездами в скоплениях, то можно сделать вывод, что их в нашей галактике действительно очень много... »

— комментирует Шольц.

Речь может идти о цифре в 100 миллиардов. Однако их может быть eщё больше.

Напомним, что коричневые карлики являются весьма тусклыми звездными объектами, поэтому eщё более тусклые их представители могли просто не попасть в поле видимости астрономов.

На момент написания данной статьи результаты последних исследований Шольца ожидали критической проверки сторонними учеными, однако первые комментарии по поводу этих наблюдений порталу Gizmodo дал астроном Джон Омира из Колледжа Сэнт-Мигеля, не принимавший участия в работе, но считающий, что отраженные в ней цифры могут быть верны.

« ... Они приходят к числу 100 миллиардов, делая немало предположений для этого. Но на самом деле вывод о количестве коричневых карликов в звездном скоплении построен на так называемой начальной функции масс, описывающей распределение масс звезд в скоплении. Когда вам известная такая функция и вам известно, с какой частотой галактика формирует звезды, то вы можете высчитать и количество звезд определенного типа. Поэтому если опустить пару допущений, то цифра в 100 миллиардов действительно кажется реальной... »

— прокомментировал Омира.

А сравнив количество коричневых карликов в двух разных скоплениях — с плотным и менее плотным распределением звезд — исследователи показали, что среда, в которой появляются звезды, не всегда является ключевым фактором, регулирующим частоту появления подобного типа звездных объектов.

“Формирование коричневых карликов является универсальной и неотъемлемой частью звездообразования в целом” , — говорит Омира.

Профессор Абель Мендес из Лаборатории по изучению обитаемости планет (Planetary Habitability L aboratory), eщё один астроном, также не принимавший участия в обсуждаемом исследовании, говорит, что цифры в новой работе действительно могут иметь смысл, особенно если учитывать тот факт, что в нашей галактике существенно больше более компактных звездных объектов, нежели более крупных.

« ... Маленькие красные карлики, например, встречаются гораздо чаще всех остальных типов звезд. Поэтому я бы предположил, что новые цифры ─ это скорее даже нижний предел... »

— говорит Мендес.

Есть, конечно, и обратная сторона такой плодовитости коричневых карликов. Большое количество неудавшихся звезд означает и снижение потенциала обитаемости.

Мендес говорит, что коричневые карлики недостаточно стабильны для поддержания среды, которую принято называть обитаемой зоной. К тому же далеко не всем астрономам нравится сам термин “неудавшиеся звезды” .

« ... Лично я предпочитаю не называть коричневые карлики “неудавшимися звездами”, так как, на мой взгляд, они просто не заслуживают звания звезд... »

— комментирует Жаклин Фахерти, астрофизик Американского музея естественной истории.

« ... Я бы назвала их скорее “планетами-переростками”, или просто “сверхпланетами”, так как с точки зрения показателей своих масс они все-таки ближе именно к этим астрономическим объектам, нежели к звездам... »

— говорит учёный.