Строение митохондрии. Как митохондрии влияют на здоровье

21.10.2019

Бытует крепко укрепившееся мнение, что выносливость человека связано с тренировкой сердечной мышцы, и что для этого нужно длительное время выполнять невысокую по интенсивности работу.
На самом деле всё не так: выносливость неразрывно связано с митохондриями внутри мышечных волокон. Поэтому тренировка выносливости есть не что иное, как развитие максимального количества митохондрии внутри каждого мышечного волокна.
А т.к. максимальное количество митохондрий ограничено пространством внутри мышечного волокна, то и развитие выносливости ограничено тем количеством мышц, которые присутствуют у конкретного человека.
Короче: чем больше у человека митохондрий внутри конкретных мышечных групп, тем более выносливыми являются эти конкретные мышечные группы.
И самое важное: не существует общей выносливости. Есть только локальная выносливость конкретных мышечных групп.

Митохондрии. Что это такое

Митохондрии – это особенные органеллы (структуры) внутри клеток человеческого организма, которые отвечают за производство энергии для мышечных сокращений. Иногда их называют энергетическими станциями клетки.
При этом процесс производства энергии внутри митохондрий происходит в присутствии кислорода. Кислород делает процесс получения энергии внутри митохондрий максимально эффективным, если сравнивать процесс получения энергии без кислорода.
Топливом для производства энергии могут являются совершенно различные вещества: жир, гликоген, глюкоза, лактат, ионы водорода.

Митохондрии и выносливость. Как это происходит

При мышечном сокращении всегда появляется остаточный продукт. Обычно это молочная кислота – химическое соединение из лактата и ионов водорода.
По мере накопления внутри мышечного волокна (мышечной клетки) ионы водорода начинают вмешиваться в процесс получения энергии для сокращения мышечного волокна. А как только уровень концентрации ионов водорода достигает критической отметки, мышечное сокращение прекращается. И данный момент может свидетельствовать об максимальном уровне выносливости конкретной мышечной группы.
Митохондрии обладают способностью поглощать ионы водорода и перерабатывать их внутри себя.
Получается следующая ситуация. Если внутри мышечных волокон присутствует большое количество митохондрий, то они способны утилизировать и большее количество ионов водорода. А это означает более длительную работу конкретной мышцы без необходимости прекратить усилие.
В идеале, если митохондрий внутри работающих мышечных волокон достаточно для утилизации всего количества образующихся ионов водорода, то такое мышечное волокно становится практически неутомимым и способным продолжать работу до тех пор, пока будет достаточное количество питательных веществ для сокращения мышц.
Пример.
Почти каждый из нас способен длительное время идти быстрым темпом, но довольно скоро бывает вынужден прекратить бег быстрым темпом. Почему так выходит?
При быстрой ходьбе работают т.н. окислительные и промежуточные мышечные волокна. Окислительные мышечные волокна характеризуются максимально возможным количеством митохондрий, грубо говоря, митохондрий там 100 %.
В промежуточных мышечных волокнах митохондрий ощутимо меньше, пусть это будет 50 % от максимального количества. В итоге, постепенно внутри промежуточных мышечных волокон начинают накапливаться ионы водорода, которые должны бы привести к прекращению сокращения мышечных волокон.
Но этого не происходит по причине того, что ионы водорода проникают внутрь окислительных мышечных волокон, где митохондрии без труда справляются с их утилизацией.
В итоге, мы способны продолжать движения до тех пор, пока в организме достаточно гликогена, а также запасов жира внутри работающих окислительных мышечных волокон. Затем мы будем вынуждены сделать отдых для пополнения запасов энергии.
В случае с быстрым бегом в работу, помимо упомянутых окислительных и промежуточных мышечных волокон, включаются и т.н. гликолитические мышечные волокна, в которых почти отсутствуют митохондрии. Поэтому гликолитические мышечные волокна способны работать лишь короткое время, зато крайне интенсивно. Именно таким образом повышается скорость бега.
Потом общее количество ионов водорода становится таким, что всё количество имеющихся там же митохондрий уже не способно утилизировать их. Наступает отказ от выполнения работы предложенной интенсивности.
Но что было бы, если бы все мышечные группы имели внутри себя только окислительные мышечные волокна?
В этом случае мышечная группа с окислительными волокнами становится неутомимой. Ее выносливость становится равной бесконечности (при условии достаточного количества питательных веществ – жиров и гликогена).
Делаем следующий вывод: Для тренировки выносливости первоочередное значение имеет развитие митохондрий внутри рабочих мышечных волокон. Именно благодаря митохондриям достигается выносливость мышечных групп.
Не существует общей выносливости организма, потому что выносливость (способность выполнять работу предложенной интенсивности) связана с присутствием в работающих мышцах митохондрий. Чем митохондрий там больше, тем большую выносливость способны показать мышцы.


Основной функцией митохондрий является синтез АТФ - универсальной формы химической энергии в любой живой клетке. Как иг у прокариот, данная молекула может образовываться двумя путями: в результате гликолизе) или в процессе мембранного фосфорилирования, связанного с использованием энергии трансмембранного электрохимического градиента (англ.)русск. протонов (ионов водорода). Митохондрии реализуют оба эти пути, первый из которых характерен для начальных процессов окисления субстрата и происходит в матриксе, а второй завершает процессы энергообразования и связан с кристами митохондрий. При этом своеобразие митохондрий как энергообразующих органелл эукариотической клетки определяет именно второй путь генерации АТФ, получивший название «хемиосмотического сопряжения». По сути это последовательное превращение химической энергии восстанавливающих эквивалентов НАДН в электрохимический протонный градиент AjiH+ по обе стороны внутренней мембраны митохондрии, что приводит в действие мембранно-связанную АТФ-синтетазу и завершается образованием макроэргической связи в молекуле АТФ.

В основе всех мембран клетки лежит двойной слой молекул липидов. Их гидрофобные «хвосты», состоящие из остатков молекул жирных кислот, обращены внутрь двойного слоя. Снаружи располагаются гидрофильные «головки», состоящие из остатка молекулы спирта глицерина. В состав мембран чаще всего входят фосфолипиды и гликолипиды (их молекулы наиболее полярны), а также жиры и жироподобные вещества (например, холестерин). Липиды являются основой мембраны, обеспечивают ее устойчивость и прочность, т.е. выполняют структурную (строительную) функцию. Эта функция возможна благодаря гидрофобности липидов.

Пластиды. Гипотезы их возникновения в растительной клетке. Субмикроскопическое строение хлоропластов, их функции, расположение их в органах

Пластиды - органоиды эукариотических растений и некоторых фотосинтезирующих простейших (например, эвглены зеленой). Покрыты двойной мембраной и имеют в своём составе множество копий кольцевой ДНКВ целом организмы можно разделить на две группы: на организмы, клетки которых содержат настоящие клеточные ядра, и организмы, которые этим свойством не обладают. Первые называются эукариотами, вторые - прокариотами. К прокариотам относятся бактерии и сине-зеленые водоросли. Эукариоты объединяют все остальные одно- и многоклеточные живые существа. В противоположность прокариотам, кроме обладания клеточными ядрами, эти существа отличаются выраженной способностью к образованию органоидов. Органоиды - это разделенные мембранами составные части клеток. Так, самыми большими клеточными органоидами (по крайней мере, различимыми в световой микроскоп), которыми обладают эукариоты, являются митохондрии, а растительные организмы обладают еще и пластидами. Митохондрии и пластиды большей частью отделены от цитоплазмы клетки двумя мембранами. (Некоторые подробности строения. Митохондрии часто называют "силовыми станциями" эукариотических клеток, так как они играют большую роль в образовании и превращении энергии в клетке. Пластиды для растений не менее важны: хлоропласта, которые являют собой основной тип пластид, заключают в себе механизм фотосинтеза, который осуществляет превращение солнечного Света в химическую энергию.

У различных групп организмов хлоропласты значительно различаются по размерам, строению и количеству в клетке. Особенности строения хлоропластов имеют большое таксономическое значение

Основная функция хлоропластов, состоит в улавливании и преобразовании световой энергии.

В состав мембран, образующих граны, входит зеленый пигмент - хлорофилл. Именно здесь происходят световые реакции фотосинтеза - поглощение хлорофиллом световых лучей и превращение энергии света в энергию возбужденных электронов. Электроны, возбужденные светом, т. е. обладающие избыточной энергией, отдают свою энергию на разложение

воды и синтез АТФ. При разложении воды образуются кислород и водород. Кислород выделяется в атмосферу, а водород связывается белком ферредоксином.

2. Пластиды. Гипотезы их возникновения в растительной клетке. Субмикроскопическое строение хромопластов, их функции, расположение их в органах

Хромопласт (окрашенные пласты) - окрашенные незелёные тела, заключающиеся в телах высших растений, в отличие от зелёных тел (хлоропластов).

Хромопласты содержат лишь жёлтые, оранжевые и красноватые пигменты из ряда каротинов (см. хлорофилл). Чисто-красные, синие и фиолетовые пигменты (антоциан) и некаротинного характера - жёлтые (антохлор) у высших растений растворены в клеточном соке. Форма хромопластов разнообразна: они бывают круглые, многоугольные, палочковидные, веретенообразные, серповидные, трёхрогие и т. - д. Хромопласты происходят большей частью из хлоропластов (хлорофилльных зёрен), которые теряют хлорофилл и крахмал, что заметно в лепестках, в ткани плодов и т. д. Развитие каротина в хлоропласте понятно из того, что первый в них содержится вместе с хлорофиллом. Так же как и у хлоропластов, у хромопластов пигмент образует в протоплазматической, бесцветной основе лишь отдельные включения, причём иногда в виде настоящих кристаллов, игольчатых, волосовидных, прямых или изогнутых и т. д.

Функция хлоропластов: фотосинтез. Полагают, что хлороплас"гы произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Пластиды. Гипотезы их возникновения в растительной клетке. Субмикроскопическое строение лейкопластов, их функции, расположение их в органах

Лейкопласты - бесцветные сферические пластиды в клетках растений.

Лейкопласты образуются в запасающих тканях (клубнях, корневищах), клетках эпидермы и других частях растений. Синтезируют и накапливают крахмал (так называемые амилопласты), жиры, белки. Лейкопласты содержат ферменты, с помощью которых из глюкозы, образованной в процессе фотосинтеза, синтезируется крахмал. На свету лейкопласты превращаются в хлоропласты.

Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы TOS-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты - лейкопласты, которые синтезируют и накапливают крахмал, элайопласты - масла, протеинопласты

белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Митохондрия.

Митохондрия - состоящая из двух мембран органелла толщиной около 0,5 мкм.

Энергетическая станция клетки; основная функция - окисление органических соединений и использование, освобождающейся при их распаде энергии в синтезе молекул атф (универсальный источник энергии для всех биохимических процессов).

По своему строению они представляют собой цилиндрические органеллы, встречающиеся в эукариотической клетке в количестве от нескольких сот до 1-2 тысяч и занимающие 10-20 % её внутреннего объёма. Сильно варьируют так же размеры (от 1 до 70 мкм) и форма митохондрий. При этом ширина этих частей клетки относительно постоянна (0,5-1 мкм). Способны изменять форму. в зависимости от того, в каких участках клетки в каждый конкретный момент происходит повышенное потребление энергии, митохондрии способны перемещаться по цитоплазме в зоны наибольшего энергопотребления, используя для движения структуры клеточного каркаса эукариотической клетки.

Красавица митохондрия в 3д представлении)

Альтернативой множеству разрозненных небольших митохондрий, функционирующих независимо друг от друга и снабжающих атф небольшие участки цитоплазмы, является существование длинных и разветвлённых митохондрий, каждая из которых может энергетически обеспечивать отдалённые друг от друга участки клетки. вариантом такой протяжённой системы может также являться упорядоченное пространственное объединение множества митохондрий (хондриом или митохондрион), обеспечивающее их кооперативную работу.

Особенно сложно этот тип хондриома устроен в мышцах, где группы гигантских разветвлённых митохондрий связаны друг с другом с помощью межмитохондриальных контактов (ммк). Последние образованы плотно прилегающими друг к другу наружными митохондриальными мембранами, в результате чего межмембранное пространство в этой зоне имеет повышенную электронную плотность (много отрицательно заряженных частиц). Особенно обильно ммк представлены в клетках сердечных мышц, где они связывают множественные отдельные митохондрии в согласованную работающую кооперативную систему.

Структура.

Наружная мембрана.

Наружная мембрана митохондрии имеет толщину около 7 нм, не образует впячиваний и складок, и замкнута сама на себя. на наружную мембрану приходится около 7 % от площади поверхности всех мембран клеточных органелл. Основная функция - отграничение митохондрии от цитоплазмы. Наружная мембрана митохондрии состоит из двойного жирового слоя (как и у клеточной мембраны) и пронизывающих его белков. Белки и жиры в равных пропорциях по массе.
Особую роль играет порин - каналообразующий белок.
Он формирует в наружной мембране отверстия диаметром 2-3 нм, через которые могут проникать небольшие молекулы и ионы. Крупные молекулы могут пересекать наружную мембрану только посредством активного транспорта через транспортные белки митохондриальных мембран. Наружная мембрана митохондрии может взаимодействовать с мембраной эндоплазматического ретикулума; это играет важную роль в транспортировке липидов и ионов кальция.

Внутренняя мембрана.

Внутренняя мембрана образует многочисленные гребневидные складки - кристы,
существенно увеличивающие площадь ее поверхности и, например, в клетках печени составляет около трети всех клеточных мембран. характерной чертой состава внутренней мембраны митохондрий является присутствие в ней кардиолопина - особый сложный жир, содержащего сразу четыре жирные кислоты и делающего мембрану абсолютно непроницаемой для протонов (положительно заряженных частиц).

Ещё одна особенность внутренней мембраны митохондрий - очень высокое содержание белков (до 70 % по весу), представленных транспортными белками, ферментами дыхательной цепи, а также крупными ферментами комплексами производящими атф. Внутренняя мембрана митохондрии в отличие от внешней не имеет специальных отверстий для транспорта мелких молекул и ионов; на ней, на стороне, обращенной к матриксу, располагаются особые молекулы ферменты производящие атф, состоящие из головки, ножки и основания. При прохождении через них протонов происходит создание атф.
В основании частиц, заполняя собой всю толщу мембраны, располагаются компоненты дыхательной цепи. наружная и внутренняя мембраны в некоторых местах соприкасаются, там находится специальный белок-рецептор, способствующий транспорту митохондриальных белков, закодированных в ядре, в матрикс митохондрии.

Матрикс.

Матрикс - ограниченное внутренней мембраной пространство. В матриксе (розовом веществе) митохондрии находятся ферментные системы окисления пирувата жирных кислот, а так же ферменты типа трикарбоновых кислот (цикл дыхания клетки). Кроме того, здесь же находится митохондриальная днк, рнк и собственный белоксинтезирующий аппарат митохондрии.

пируваты (соли пировиноградной кислоты) - важные химические соединения в биохимии. Они является конечным продуктом обмена веществ глюкозы в процессе ее расщепления.

Митохондриальная днк.

Несколько отличий от днк ядерной:

- митохондриальная днк – кольцевая, в отличии от ядерной днк, которая упакована в хромосомы.

- между различными эволюционными вариантами митохондриальной днк одного вида невозможен обмен сходными участками.

И поэтому вся молекула изменяется только путем медленного мутирования в течение тысячелетий.

- мутации кода в митохондриальных днк могут возникать независимо от ядерной днк.

Мутация ядерного кода днк возникает в основном при делении клетки, но митохондрии делятся независимо от клетки, и могут получать мутацию кода отдельно от ядерной днк.

- сама структура митохондриальной днк упрощена, т.к. многие составные процессы чтения днк утеряны.

- транспортные рнк имеют одинаковое строение. но рнк- митохондрий учавствуют только в синтезе митохондриальных белков.

Имея собственный генетический аппарат, митохондрия обладает и собственной белоксинтезирующей системой, особенностью которой в клетках животных и грибов являются очень маленькие рибосомы.

Функции.

Энергообразование.

Основной функцией митохондрий является синтез атф - универсальной формы химической энергии в любой живой клетке.

Данная молекула может образовываться двумя путями:

- путем реакции, в которых энергия освобождающаяся на определенных окислительных этапах брожения запасается в виде атф.

- благодаря энергии, выделяющейся при окислении органических веществв в процессе клеточного дыхания.

Митохондрии реализуют оба эти пути, первый из которых характерен для начальных процессов окисления и происходит в матриксе, а второй завершает процессы энергообразования и связан с кристами митохондрий.
При этом своеобразие митохондрий как энергообразующих органелл эукариотической клетки определяет именно второй путь генерации атф, получивший название «хемиосмотического сопряжения».
В целом весь процесс энергообразования в митохондриях может быть разбит на четыре основные стадии, первые две из которых протекают в матриксе, а две последние - на кристах митохондрий:

1) Превращение поступивших из цитоплазмы в митохондрию пируват (конечный продукт расщепления глюкозы) и жирных кислот в ацетил-коа;

ацетил-коа – важное соединение в обмене веществ, используемое во многих биохимических реакциях. его главная функция – доставлять атомы углерода (с) с ацетил-группой (ch3 co) в цикл клеточного дыхания, чтобы те были окислены с выделением энергии.

клеточное дыхание - совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, жиров и аминокислот до углекислого газа и воды.

2) Окисление ацетил-соа в цикле клеточного дыхания, ведущее к образованию надн;

НАДН кофермент, выполняет функцию переносчика электронов и водорода, которые принимает от окисляемых веществ.

3) Перенос электронов с надн на кислород по дыхательной цепи;

4) Образование атф в результате деятельности мембранного атф-создающего комплекса.

АТФ- синтетаза.

АТФ-синтетаза станция по производству молекул АТФ.

В структурно-функциональном плане АТФ-синтетаза состоит из двух крупных фрагментов, обозначаемых символами F1 и F0. Первый из них (фактор сопряжения F1) обращён в сторону матрикса митохондрии и заметно выступает из мембраны в виде сферического образования высотой 8 нм и шириной 10 нм. Он состоит из девяти субъединиц, представленных пятью типами белков. Полипептидные цепи трёх субъединиц α и стольких же субъединиц β уложены в похожие по строению белковые глобулы, которые вместе образуют гексамер (αβ)3, имеющий вид слегка приплюснутого шара.

Субъединица – это структурный и функциональный компонент какой либо частицы
Полипептиды - органические соединения, содержащие от 6 до 80-90 аминокислотных остатков.
Глобула – состояние макромолекул, в котором колебание звеньев мало.
Гексамер – соединение содержащее 6 субъедениц.

Подобно плотно уложенным долькам апельсина, последовательно расположенные субъединицы α и β образуют структуру, характеризующуюся симметричность относительно угла поворота 120°. В центре этого гексамера находится субъединица γ, которая образована двумя протяжёнными полипептидными цепями и напоминает слегка деформированный изогнутый стержень длиной около 9 нм. При этом нижняя часть субъединицы γ выступает из шара на 3 нм в сторону мембранного комплекса F0. Также внутри гексамера находится минорная субъединица ε, связанная с γ. Последняя (девятая) субъединица обозначается символом δ и расположена на внешней стороне F1.

Минорная – одиночная субъеденица.

Мембранная часть АТФ-синтетазы, представляет собой водо-отталкивающий белковый комплекс, пронизывающий мембрану насквозь и имеющий внутри себя два полуканала для прохождения протонов водорода. Всего в состав комплекса F0 входит одна белковая субъединица типа а , две копии субъединицы b , а также от 9 до 12 копий мелкой субъединицы c . Субъединица а (молекулярная масса 20 кДа) полностью погружена в мембрану, где образует шесть пересекающих её α-спиральных участков. Субъединица b (молекулярная масса 30 кДа) содержит лишь один сравнительно короткий погружённый в мембрану α-спиральный участок, а остальная её часть заметно выступает из мембраны в сторону F1 и закрепляется за расположенную на её поверхности субъединицу δ. Каждая из 9-12 копий субъединицы c (молекулярная масса 6-11 кДа) представляет собой сравнительно небольшой белок из двух водо-отталкивающих α-спиралей, соединённых друг с другом короткой водо-притягивающей петлёй, ориентированной в сторону F1, а все вместе образуют единый ансамбль, имеющий форму погружённого в мембрану цилиндра. Выступающая из комплекса F1 в сторону F0 субъединица γ как раз и погружена внутрь этого цилиндра и достаточно прочно зацеплена за него.
Таким образом, в молекуле АТФазы можно выделить две группы белковых субъединиц, которые могут быть уподоблены двум деталям мотора: ротору и статору.

«Статор» неподвижен относительно мембраны и включает в себя шарообразный гексамер (αβ)3, находящуюся на его поверхности и субъединицу δ, а также субъединицы a и b мембранного комплекса F0.

Подвижный относительно этой конструкции «ротор» состоит из субъединиц γ и ε, которые, заметно выступая из комплекса (αβ)3, соединяются с погружённым в мембрану кольцом из субъединиц c .

Способность синтезировать АТФ - свойство единого комплекса F0F1, объедененного с переносом протонов водорода через F0 к F1, в последнем из которых как раз и расположены центры реакции, осуществляющие преобразование АДФ и фосфата в молекулу АТФ. Движущей же силой для работы АТФ-синтетазы является протонный (положительно заряженный) потенциал, создаваемый на внутренней мембране митохондрий в результате работы цепи электронного (отрицательно заряженного) транспорта.
Сила, приводящая в движение «ротор» АТФ-синтетазы, возникает при достижении разности потенциалов между наружной и внутренней сторонами мембраны > 220 10−3 Вольт и обеспечивается потоком протонов, протекающих через специальный канал в F0, расположенный на границе между субъединицами a и c . При этом путь переноса протонов включает в себя следующие структурные элементы:

1) Два расположенных на разных осях «полуканала», первый из которых обеспечивает поступление протонов из межмембранного пространства к существенно важным функциональным группам F0, а другой обеспечивает их выход в матрикс митохондрии;

2) Кольцо из субъединиц c , каждая из которых в своей центральной части содержит протонируемую карбоксильную группу (COOH), способную присоединять H+ из межмембранного пространства и отдавать их через соответствующие протонные каналы. В результате периодических смещений субъединиц с , обусловленных потоком протонов через протонный канал происходит поворот субъединицы γ, погружённой в кольцо из субъединиц с .

Таким образом, объединяющая активность АТФ-синтетазы непосредственно связана с вращением её «ротора», при котором поворот субъединицы γ вызывает одновременное изменение конформации всех трёх объединяющих субъединиц β, что в конечном счёте и обеспечивает работу фермента. При этом в случае образования АТФ «ротор» крутится по часовой стрелке со скоростью четыре оборота в секунду, а само подобное вращение происходит точными скачками по 120°, каждый из которых сопровождается образованием одной молекулы АТФ.
Работа АТФ-синтетазы связана с механическими движениями её отдельных частей, что позволило отнести этот процесс к особому типу явлений, названных «вращательным катализом». Подобно тому, как электрический ток в обмотке электродвигателя приводит в движение ротор относительно статора, направленный перенос протонов через АТФ-синтетазу вызывает вращение отдельных субъединиц фактора сопряжения F1 относительно других субъединиц ферментного комплекса, в результате чего это уникальное энергообразующее устройство совершает химическую работу - синтезирует молекулы АТФ. В дальнейшем АТФ поступает в цитоплазму клетки, где расходуется на самые разнообразные энергозависимые процессы. Подобный перенос осуществляется специальным встроенным в мембрану митохондрий ферментом АТФ/АДФ-транслоказой.

АДФ-транслоказа – пронизывающий внутреннюю мембрану белок, который обменивает вновь синтезированную АТФ на цитоплазматическую АДФ, что гарантирует сохранность фонда внутри митохондрий.

Митохондрии и наследственность.

ДНК митохондрий наследуются почти исключительно по материнской линии. Каждая митохондрия имеет несколько участков нуклеотидов в ДНК, идентичных во всех митохондриях (то есть в клетке много копий митохондриальных ДНК), что очень важно для митохондрий, неспособных восстанавливать ДНК от повреждений (наблюдается высокая частота мутаций). Мутации в митохондриальной ДНК являются причиной целого ряда наследственных заболеваний человека.

3д модель

Дисковери

С англ озвучкой

Немного о дыхании клетки и митохондрии на зарубежном языке

Структура строения

Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.

Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.

Особенности строения

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана . Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин - белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство . Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Внутренняя мембрана . Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO 2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений. В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление . Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Функции в клетке

  1. Основная функция митохондрий – образование молекул АТФ.
  2. Депонирование ионов Кальция.
  3. Участие в обмене воды.
  4. Синтез предшественников стероидных гормонов.

Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.

Таблица: строение и функции митохондрий (кратко)
Структурные элементы Строение Функции
Наружная мембрана Гладкая оболочка, построена из липидов и белков Отграничивает внутреннее содержимое от цитоплазмы
Межмембранное пространство Находятся ионы водорода, белки, микромолекулы Создает протонный градиент
Внутренняя мембрана Образует выпячивания – кристы, содержит белковые транспортные системы Перенос макромолекул, поддержание протонного градиента
Матрикс Место расположения ферментов цикла Кребса, ДНК, РНК, рибосом Аэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
Рибосомы Объединённые две субъединицы Синтез белка

Сходство митохондрий и хлоропластов


Общие свойства для митохондрий и хлоропластов обусловлены, прежде всего, наличием двойной мембраны.

Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

И митохондрии и хлоропласты могут делиться с помощью перетяжки.

Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

Опишем кратко сходства и различия:

  • Являются двомембранными органеллами;
  • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
  • обладают собственным геномом;
  • способны синтезировать белки и энергию.

Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.

(от греч. mitos - нить, chondrion - зернышко, soma - тельце) представляют собой гранулярные или нитевидные органоиды ( рис. 1, а). Митохондрии можно наблюдать в живых клетках, так как они обладают достаточно высокой плотностью. В таких клетках митохондрии могут двигаться, перемещаться, сливаться друг с другом. Особенно хорошо митохондрии выявляются на препаратах, окрашенных различными способами. Размеры митохондрий непостоянны у разных видов, так же изменчива их форма. Все же у большинства клеток толщина этих структур относительно постоянна (около 0,5 мкм), но длина колеблется, достигая у нитчатых форм 7-60 мкм.

Митохондрии независимо от их величины и формы имеют универсальное строение, их ультраструктура однообразна. Митохондрии ограничены двумя мембранами ( рис. 1, б), у них четыре субкомпартмента: митохондриальный матрикс , внутренняя мембрана , мембранное пространство и внешняя мембрана , обращенная к цитозолю. Внешняя мембрана отделяет ее от остальной цитоплазмы. Толщина внешней мембраны около 7 нм, она не связана ни с какими другими мембранами цитоплазмы и замкнута сама на себя, так что представляет собой мембранный мешок. Наружную мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внутренняя мембрана (толщиной около 7 нм) ограничивает собственно внутреннее содержимое митохондрии, ее матрикс , или митоплазму . Характерной чертой внутренних мембран митохондрий является их способность образовывать многочисленные выпячивания (складки) внутрь митохондрий. Такие выпячивания ( кристы , рис. 27) чаще всего имеют вид плоских гребней. Митохондрии осуществляют синтез АТФ, происходящий в результате процессов окисления органических субстратов и фосфорилирования АДФ.

Митохондрии специализируются на синтезе АТФ путем транспорта электронов и окислительного фосфорилирования. (рис 21-1). Хотя они имеют свою собственную ДНК и аппарат белкового синтеза, большинство их белков кодируется клеточной ДНК и поступает из цитозоля. Более того, каждый поступивший в органеллу белок должен достичь определенного субкомпартмента, в котором он функционирует.

Митохондрии - это "энергетические станции" эукариотических клеток. В кристы встроены ферменты, участвующие в преобразовании энергии питательных веществ, поступающих в клетку извне, в энергию молекул АТФ. АТФ - "универсальная валюта", которой клетки расплачиваются за все свои энергетические расходы. Складчатость внутренней мембраны увеличивает поверхность, на которой размещаются ферменты, синтезирующие АТФ. Количество крист в митохондрии и количество самих митохондрий в клетке тем больше, чем больше энергетических трат осуществляет данная клетка. В летательных мышцах насекомых каждая клетка содержит несколько тысяч митохондрий. Меняется их количество и в процессе индивидуального развития (онтогенеза): в молодых эмбриональных клетках они более многочисленны, чем в клетках стареющих. Обычно митохондрии скапливаются вблизи тех участков цитоплазмы, где возникает потребность в АТФ, образующейся в митохондриях.

Расстояние между мембранами в кристе составляет около 10-20 нм. У простейших, одноклеточных водорослей в некоторых клетках растений и животных выросты внутренней мембраны имеют вид трубочек диаметром около 50 нм. Это так называемые трубчатые кристы.

Митохондриальный матрикс гомогенен и имеет более плотную консистенцию, чем окружающая митохондрию гиалоплазма. В матриксе выявляются тонкие нити ДНК и РНК, а также митохондриальные рибосомы, на которых синтезируются некоторые митохондриальные белки. С помощью электронного микроскопа на внутренней мембране и кристах со стороны матрикса можно увидеть грибовидные образования - АТФ-сомы. Это ферменты, образующие молекулы АТФ. Их может быть до 400 на 1 мкм.

Немногие белки, которые кодируются собственным геномом митохондрий, расположены в основном во внутренней мембране. Они обычно образуют субъединицы белковых комплексов, другие компоненты которых кодируются ядерными генами и поступают из цитозоля. Образование таких гибридных агрегатов требует сбалансирования синтеза этих двух типов субъединиц; каким образом координируется синтез белка на рибосомах разных типов, разделенных двумя мембранами, остается загадкой.

Обычно митохондрии располагаются в местах, где необходима энергия для любых жизненных процессов. Возник вопрос, каким образом транспортируется в клетке энергия - путем ли диффузии АТФ и нет ли в клетках структур, исполняющих роль электрических проводников, которые могли бы энергетически объединять отдаленные друг от друга участки клетки. Гипотеза заключается в том, что разность потенциалов в определенной области мембраны митохондрий передается вдоль нее и превращается в работу в другой области той же мембраны [ Скулачев В.П., 1989 ].

Как представлялось, подходящими кандидатами на эту же роль могли быть мембраны самих митохондрий. Кроме того, исследователей интересовали взаимодействие в клетке множественных митохондрий друг с другом, работа всего ансамбля митохондрий, всего хондриома - совокупности всех митохондрий.

Митохондрии характерны за малым исключением для всех эукариотических клеток как аутотрофных (фотосинтезирующие растения), так и гетеротрофных (животные, грибы) организмов. Их основная функция связана с окислением органических соединений и использованием освобождающейся при распаде этих соединений энергии в синтезе молекул АТФ. Поэтому митохондрии часто называют энергетическими станциями клетки.