Основатель популяционной генетики. Лекция "Генетика человека. Генетика популяций"

21.09.2019

Популяционная генетика, раздел генетики, изучающий генофонд популяций и его изменение в пространстве и во времени. Разберемся подробнее в этом определении. Особи не живут поодиночке, а образуют более или менее устойчивые группировки, сообща осваивая среду обитания. Такие группировки, если они самовоспроизводятся в поколениях, а не поддерживаются только за счет пришлых особей, называют популяциями. Например, стадо семги, нерестящейся в одной реке, образует популяцию, потому что потомки каждой рыбы из года в год, как правило, возвращаются в ту же реку, на те же нерестилища. У сельскохозяйственных животных популяцией принято считать породу: все особи в ней единого происхождения, т.е. имеют общих предков, содержатся в сходных условиях и поддерживаются единой селекционной и племенной работой. У аборигенных народов популяция – это члены связанных родством стойбищ.

При наличии миграций границы популяций размыты и потому неопределимы. Например, все население Европы – потомки кроманьонцев, заселивших наш континент десятки тысяч лет назад. Изоляция между древними племенами, усиливавшаяся с развитием у каждого из них собственного языка и культуры, вела к различиям между ними. Но обособленность их относительна. Постоянные войны и захваты территории, а в последнее время – гигантская миграция вели и ведут к определенному генетическому сближению народов.

Приведенные примеры показывают, что под словом «популяция» следует понимать группировку особей, связанных территориальной, исторической и репродуктивной общностью.

Особи каждой популяции отличаются друг от друга, и каждая из них в чем-то уникальна. Многие из этих различий наследственные, или генетические, – они определяются генами и передаются от родителей к детям.

Совокупность генов у особей данной популяции называют ее генофондом. Для того чтобы решать проблемы экологии, демографии, эволюции и селекции, важно знать особенности генофонда, а именно: сколь велико генетическое разнообразие в каждой популяции, каковы генетические различия между географически разделенными популяциями одного вида и между различными видами, как генофонд изменяется под действием окружающей среды, как он преобразуется в ходе эволюции, как распространяются наследственные заболевания, насколько эффективно используется генофонд культурных растений и домашних животных. Изучением этих вопросов и занимается популяционная генетика.

Основные понятия популяционной генетики

Частоты генотипов и аллелей. Важнейшим понятием популяционной генетики является частота генотипа – доля особей в популяции, имеющих данный генотип. Рассмотрим аутосомный ген, имеющий k аллелей, A1, A2, …, Ak. Пусть популяция состоит из N особей, часть которых имеет аллели Ai Aj. Обозначим число этих особей Nij. Тогда частота этого генотипа (Pij) определяется как Pij = Nij/N. Пусть, например, ген имеет три аллеля: A1, A2 и A3 – и пусть популяция состоит из 10000 особей, среди которых имеются 500, 1000 и 2000 гомозигот A1A1, A2A2 и A3A3, а гетерозигот A1A2, A1A3 и A2A3 – 1000, 2500 и 3000 соответственно. Тогда частота гомозигот A1A1 равна P11 = 500/10000 = 0,05, или 5%. Таким образом мы получаем следующие наблюдаемые частоты гомо- и гетерозигот:

P11 = 0,05, P22 = 0,10, P33 = 0,20,

P12 = 0,10, P13 = 0,25, P23 = 0,30.

Еще одним важным понятием популяционной генетики является частота аллеля – его доля среди имеющих аллелей. Обозначим частоту аллеля Ai как pi. Поскольку у гетерозиготной особи аллели разные, частота аллеля равна сумме частоты гомозиготных и половине частот гетерозиготных по этому аллелю особей. Это выражается следующей формулой: pi = Pii + 0,5jPij. В приведенном примере частота первого аллеля равна p1 = P11 + 0,5(P12 + P13) = 0,225. Соответственно, p2 = 0,300, p3 = 0,475.

Соотношения Харди – Вайнберга. При исследовании генетической динамики популяций, в качестве теоретической, «нулевой» точки отсчета принимают популяцию со случайным скрещиванием, имеющую бесконечную численность и изолированную от притока мигрантов; полагают также, что темпы мутирования генов пренебрежимо малы и отбор отсутствует. Математически доказывается, что в такой популяции частоты аллелей аутосомного гена одинаковы для самок и самцов и не меняются из поколения в поколение, а частоты гомо- и гетерозигот выражаются через частоты аллелей следующим образом:

Pii = pi2, Pij = 2pi pj.

Это называется соотношениями, или законом, Харди – Вайнберга – по имени английского математика Г.Харди и немецкого медика и статистика В.Вайнберга, одновременно и независимо открывших их: первый – теоретически, второй – из данных по наследованию признаков у человека.

Реальные популяции могут значительно отличаться от идеальной, описываемой уравнениями Харди – Вайнберга. Поэтому наблюдаемые частоты генотипов отклоняются от теоретических величин, вычисляемых по соотношениям Харди – Вайнберга. Так, в рассмотренном выше примере теоретические частоты генотипов отличаются от наблюдаемых и составляют

P11 = 0,0506, P22 = 0,0900, P33 = 0,2256,

P12 = 0,1350, P13 = 0,2138, P23 = 0,2850.

Подобные отклонения можно частично объяснить т.н. ошибкой выборки; ведь в действительности в эксперименте изучают не всю популяцию, а лишь отдельных особей, т.е. выборку. Но главная причина отклонения частот генотипов – несомненно, те процессы, что протекают в популяциях и влияют на их генетическую структуру. Опишем их последовательно.

Популяционно-генетические процессы

Дрейф генов. Под дрейфом генов понимают случайные изменения генных частот, вызванные конечной численностью популяции. Чтобы понять, как возникает генный дрейф, рассмотрим вначале популяцию минимально возможной численности N = 2: один самец и одна самка. Пусть в исходном поколении самка имеет генотип A1A2, а самец – A3A4. Таким образом, в начальном (нулевом) поколении частоты аллелей A1, A2, A3 и A4 равны 0,25 каждая. Особи следующего поколения могут равновероятно иметь один из следующих генотипов: A1A3, A1A4, A2A3 и A2A4. Допустим, что самка будет иметь генотип A1A3, а самец – A2A3. Тогда в первом поколении аллель A4 теряется, аллели A1 и A2 сохраняют те же частоты, что и в исходном поколении – 0,25 и 0,25, а аллель A3 увеличивает частоту до 0,5. Во втором поколении самка и самец тоже могут иметь любые комбинации родительских аллелей, например A1A2 и A1A2. В этом случае окажется, что аллель A3, несмотря на большую частоту, исчез из популяции, а аллели A1 и A2 увеличили свою частоту (p1 = 0,5, p2 = 0,5). Колебания их частот в конце концов приведут к тому, что в популяции останется либо аллель A1, либо аллель A2; иными словами и самец и самка будут гомозиготны по одному и тому же аллелю: A1 или A2. Ситуация могла сложиться и так, что в популяции остался бы аллель A3 или A4, но в рассмотренном случае этого не произошло.

Описанный нами процесс дрейфа генов имеет место в любой популяции конечной численности, с той лишь разницей, что события развиваются с гораздо меньшей скоростью, чем при численности в две особи. Генный дрейф имеет два важных последствия. Во-первых, каждая популяция теряет генетическую изменчивость со скоростью, обратно пропорциональной ее численности. Со временем какие-то аллели становятся редкими, а затем и вовсе исчезают. В конце концов, в популяции остается один-единственный аллель из имевшихся, какой именно – это дело случая. Во-вторых, если популяция разделяется на две или большее число новых независимых популяций, то дрейф генов ведет к нарастанию различий между ними: в одних популяциях остаются одни аллели, а в других – другие. Процессы, которые противодействуют потере изменчивости и генетическому расхождению популяций, – это мутации и миграции.

Мутации. При образовании гамет происходят случайные события – мутации, когда родительский аллель, скажем A1, превращается в другой аллель (A2, A3 или любой иной), имевшийся или не имевшийся ранее в популяции. Например, если бы в нуклеотидной последовательности «…TЦT ТГГ…», кодирующей участок полипептидной цепи «…серин-триптофан…», третий нуклеотид, Т, в результате мутации передался ребенку как Ц, то в соответствующем участке аминокислотной цепи белка, синтезирующегося в организме ребенка, вместо серина был бы расположен аланин, поскольку его кодирует триплет TЦЦ. Регулярно возникающие мутации и образовали в длинном ряду поколений всех обитающих на Земле видов то гигантское генетическое разнообразие, которое мы сейчас наблюдаем.

Вероятность, с которой происходит мутация, называется частотой, или темпом, мутирования. Темпы мутирования разных генов варьируют от 10–4 до 10–7 на поколение. На первый взгляд, эти величины кажутся незначительными. Однако следует учесть, что, во-первых, геном содержит много генов, а, во-вторых, что популяция может иметь значительную численность. Поэтому часть гамет всегда несет мутантные аллели, и практически в каждом поколении появляется одна или больше особей с мутациями. Их судьба зависит от того, насколько сильно эти мутации влияют на приспособленность и плодовитость. Мутационный процесс ведет к увеличению генетической изменчивости популяций, противодействуя эффекту дрейфа генов.

Миграции. Популяции одного вида не изолированы друг от друга: всегда есть обмен особями – миграции. Мигрирующие особи, оставляя потомство, передают следующим поколениям аллели, которых в этой популяции могло вовсе не быть или они были редки; так формируется поток генов из одной популяции в другую. Миграции, как и мутации, ведут к увеличению генетического разнообразия. Кроме того, поток генов, связывающий популяции, приводит к их генетическому сходству.

Системы скрещивания. В популяционной генетике скрещивание называют случайным, если генотипы особей не влияют на образование брачных пар. Например, по группам крови скрещивание может рассматриваться как случайное. Однако окраска, размеры, поведение могут сильно влиять на выбор полового партнера. Если предпочтение оказывается особям сходного фенотипа (т.е. со сходными индивидуальными характеристиками), то такое положительное ассортативное скрещивание ведет к увеличению в популяции доли особей с родительским генотипом. Если при подборе брачной пары предпочтение имеют особи противоположного фенотипа (отрицательное ассортативное скрещивание), то в генотипе потомства будут представлены новые сочетания аллелей; соответственно в популяции появятся особи либо промежуточного фенотипа, либо фенотипа, резко отличающегося от фенотипа родителей.

Популяция — это элементарная единица эволюции. Под этим термином понимают совокупность индивидов одного вида, которые связаны общим происхождением, общностью территории, способностью свободно скрещиваться и общностью генофонда. В результате естественного отбора в популяции преобладают организмы, которые обладают определенными фенотипами, а также, как следует из этого, и определенными генотипами. Такие генотипы, отдельные гены или их сочетания широко распространяются в популяции.

Предметом изучения генетики популяций являются не генотипы отдельных особей, а частоты генов (аллелей) и частоты генотипов . При анализе процессов, происходящих в популяции, мы рассматриваем не отдельные индивиды и скрещивания между этими индивидами, а наследование в больших совокупностях организмов, которые часто могут быть неоднородны по своему генотипическому составу. Вся совокупность генов особей, входящих в популяцию, образует ее генофонд . В этой области генетики чрезвычайно важно проследить в популяции динамику частот генов, аллелей, генотипов с течением времени.

В популяционной генетике важное значение имеет понятие идеальной популяции , под ней понимают такую популяцию, которая будет бесконечно велика по численности, в которой могут осуществляться свободные скрещивания (панмиксия ) во всех возможных комбинациях организмов и генотипов и при этом не действуют никакие внешние факторы (например, отсутствуют мутационный процесс, нет миграции особей из одной популяции в другую, отбора, случайного дрейфа генов, избирательности скрещиваний и изоляции). Естественно, таких популяций в природе не существует, тем не менее, введение понятия такой модельной системы позволяет понять закономерности, действующие на микроэволюционном (т.е. популяционном) уровне. Говоря о том, что в идеальной популяции не действуют внешние факторы, в действительности подразумевают существование равновесия в противоположных направлениях процессов. Так, частота возникновения прямых мутаций (например А х а ) должна быть равна частоте появления обратных мутаций (а х А ). В таком случае суммарный результат будет выглядеть как отсутствие мутационного процесса.

Аналогично обстоит дело и с миграциями. Доля (или частота) эмигрантов определенного генотипа (особей, уходящих из популяции) (например, АА ) должна быть равна доле иммигрантов (особей, приходящих в данную популяцию). На уровне частот аллелей и генотипов такое выравнивание частот выглядит как отсутствие миграции.

Изменение частот генов (аллелей) или генотипов в идеальных, или менделевских, популяциях описывается основным законом популяционной генетики — законом Харди-Вайнберга . Согласно этому закону в такой популяции частоты аллелей в ряду последовательных поколений не меняются и остаются постоянными . Такое состояние популяции часто называют равновесным .

Если обозначим частоту аллеля А через pA , a частоту аллеля а как qa , то pA + qa = 1 .

Соотношение генотипов в популяции в этом случае будет рассчитываться как (pA+qa) 2 =p 2 aa+2pAqa+q 2 a=1 , в чем можно легко убедиться, если рассмотреть решетку Пеннета:

Гаметы самцов ⇒

Гаметы самок ⇓

pA qa
pA p 2 AA pqAa
qa pqAa q 2 aa

Такое соотношение генов, аллелей и генотипов будет поддерживаться в популяции неопределенно долгое время. Иными словами, популяция может находиться в равновесии неограниченное число поколений, начиная с первого. Если знать частоты генотипов, можно рассчитать частоты аллелей и наоборот, а следовательно, можно предсказать соотношение фенотипов.

Главное следствие из закона Харди-Вайнберга — это существование рецессивных аллелей преимущественно в гетерозиготном состоянии. Закон Харди-Вайнберга рассматривает микроэволюционные процессы, которые действуют на видовом или популяционном уровнях.

Факторы, которые влияют на частоты генотипов, генов и аллелей, называют факторами динамики частот генов (аллелей) в популяциях . Действуя в популяции, они изменяют соответствующие частоты.

  • Естественный отбор. Он действует на разные группы организмов неодинаково. Он приводит к избирательной элиминации определенного фенотипа (а, следовательно, определяющего его генотипа), и соответственно, к установлению нового равновесного состояния в популяции.
    В зависимости от влияния отбора на признаки различают три типа отбора: а) стабилизирующий сохраняет среднее значение признака; б) дизруптивный приводит к закреплению крайних значений признака; в) направленный, или движущий обеспечивает постепенное изменение признака в определенном направлении.
  • Миграция . Если из популяции будут эмигрировать (или иммигрировать в нее) с ощутимой частотой индивиды определенного фенотипа, это приведет к изменению соотношения генотипов в популяции, и, как следствие, к установлению нового значения равновесия. Если в миграцию вовлекаются все генотипы равномерно, видимых последствий не наблюдается.
  • Ограничение численности и панмиксии . Если в результате действия естественных или искусственных факторов численность особей существенно уменьшится, соотношение разных генотипов в такой популяции может нарушиться. Это приведет к установлению новых частот аллелей. Об этом свидетельствуют случаи, известные под названием «дрейфа генов », или генетико-автоматических процессов.

Они реализуются в условиях снижения численности популяции в результате действия «волн жизни ». Дело в том, что в разные годы, в зависимости от конкретных условий существования, численность особей в популяции переживает подъемы (максимум) и спады (минимум). Кроме того, особи в популяции, как правило, распределены неравномерно, что ограничивает панмиксию. В результате этих событий генофонд каждого последующего поколения формируется из генотипов довольно ограниченного числа особей. Соотношение разных генотипов у них может оказаться не таким, как во всей популяции, и, следовательно, в последующих поколениях, равновесие будет другим. Однако если численность размножающихся особей достигает определенной величины, то частоты аллелей и генотипов в ней ведут себя как в панмиктической идеальной популяции. Это эффективная численность , или размер популяции . Еще более ярко это видно на примере так называемого «принципа (или эффектом) основателя ». При расселении уже существующей старой популяции на новую территорию может проникнуть лишь небольшая ее часть (иногда это всего несколько особей), чей генофонд оказывается обедненным по сравнению с исходным. Естественно, соотношение генотипов в новой дочерней популяции, возникшей в результате колонизации, будет совершенно иным. Довольно часто как при «дрейфе генов», так и в случае «эффекта основателя» некоторые аллели полностью исчезают, заменяясь другими. При этом новые аллели могут обуславливать даже меньшую приспособленность, чем исчезнувшие.

В генетике человека особое значение имеет популяционный метод, который позволяет изучать гены и генотипы без постановки скрещиваний. В основе этого метода лежит закон, сформулированный в 1908 году независимо английским математиком Г. Харди и немецким врачом В. Вайнбергом (закон Харди-Вайнберга). Условия для выполнения этого закона следующие:

Популяция должна иметь неограниченный размер (быть достаточно многочисленной по меркам статистики);

Генотип по изучаемым генам не должен влиять на выбор брачного партнера (скрещивание должно быть свободным, то есть не ассортативным);

Миграция не должна существенно изменять генотип популяции;

Должен отсутствовать отбор по аллелям изучаемых генов.

В большинстве популяций человека для большинства признаков эти условия соблюдаются. Исключения, когда закон Харди-Вайнберга не может выполняться:

Островные, отдаленные и высокогорные популяции, где из-за небольшого числа особей случайные факторы могут повлиять на частоты аллелей;

Избирательность (ассортативность) связей, приводящих к рождению детей. Например, в США браки белых мужчин с белыми женщинами и черных мужчин с черными женщинами встречаются намного чаще, чем смешанные.

Иммиграция большого числа носителей редких в популяции генотипов;

Гены, аллели которых по-разному влияют на жизнеспособность и репродуктивную функцию.

Если частота в популяции доминантного аллеля А составляет p, то частота рецессивного аллеля а будет q = 1 - p. Согласно первому положению закона Харди-Вайнберга эти значения будут неизменны из поколения в поколение (при условии выполнения требований, изложенных выше) - это состояние генетического равновесия в популяции. Соотношение равновесных частот генотипов будет определяться возведением соотношения частот аллелей в квадрат - это второе положение закона. И третье положение закона Харди-Вайнберга говорит о том, что равновесие частот генотипов достигается за одно поколение и остается неизменным.

(p + q) 2 = p 2 + 2pq + q 2

p - частота доминантного аллеля А

q - частота рецессивного аллеля а

p 2 - частота генотипа АА (доминантные гомозиготы)

2pq - частота генотипа Аа (гетерозиготы)

q 2 - частота генотипа аа (гомозиготных рецессивов)

Пример:

Одна из форм альбинизма (отсутствия пигментации кожи, радужной и пигментной оболочек глаза) у человека обусловлено редким рецессивным аллелем а (мутация в гене тирозиназы). В некоторой популяции частота альбиносов равна 0,0001. Тогда,

q - частота рецессивного аллеля а -= 0,01

p - частота доминантного аллеля А - 1 - 0,01 = 0,99

p 2 - частота генотипа АА (доминантные гомозиготы) - 0,99 2 = 0,98

2pq - частота генотипа Аа (гетерозиготы) - 2 х 0,99 х 0,01 = 0,02

Из примера видно, что гетерозигот по гену альбинизма в популяции в 200 раз больше чем альбиносов.

В случае множественного аллелизма используют аналогичные расчеты.

Пример:

В популяции индусов I группа крови встречается с частотой 0,314, II - 0,189, III - 0,410, IV - 0,087.

Пусть частота аллеля I 0 - r, аллеля I A - p, аллеля I B - q.

Тогда, носителей генотипа I 0 I 0 (I группа) будет r 2 . Таким образом,

r =
= 0,560

Общая частота аллелей I A и I B (p + q) = 1 - r = 1 - 0,560 = 0,440

Суммарная частота групп крови I и III равна (q + r) 2 . Таким образом,

(q + r) 2 = 0,314 + 0,410 = 0,724

(q + r) =
= 0,851

q = 0,851 - 0,560 = 0,291

p = 1 - q - r = 1 - 0,291 - 0,560 = 0,149

Итак, частоты аллелей групп крови системы ABO в популяции индусов следующие: I 0 - 0,560, I A - 0,149, I B - 0,291.

В большинстве популяций наблюдается дрейф генов - изменение частот аллелей под влиянием случайных факторов. Эффект бутылочного горлышка - случайной гибели носителей того или иного генотипа при существенном снижении размера популяции - является наиболее частой причиной дрейфа генов. В небольших популяциях можно встретить эффект основателя - когда одна особь (почти всегда мужчина, например, Чингизхан) оставляет огромное число потомков, вследствие чего изменяется соотношение частот аллелей и генотипов.

Исходя из закона Харди-Вайнберга нетрудно убедиться, что отбор против гомозиготных рецессивов не эффективен - элиминация (устранение) q 2 носителей генотипа аа не влияет существенно на частоты аллелей. Большинство носителей рецессивного аллеля являются гетерозиготами. В этом причина генетического груза в популяциях человека - значительного числа гетерозиготных носителей летальных (приводящих к смерти) аллелей и аллелей, связанных со снижением жизнеспособности и репродуктивной функции. Понятие генетического груза является фундаментальным в популяционной генетике, его ввел Г. Меллер в 1950 году в своей книге «Наш груз мутаций». Для расчета порядкового номера поколения (t), в котором начальная частота рецессивного аллеля (q 0) примет ожидаемое значение q t при отборе против гомозиготных рецессивов, используют формулу:

t = 1/ q t - 1/ q 0

Частота рецессивного летального аллеля 0,01. Требуется установить, сколько потребуется поколений для ее уменьшения в 10 раз при условии отсутствия новых мутаций?

t = 1/ 0,001 - 1/ 0,01 = 1000 - 100 = 900

Итак, для уменьшения частоты рецессивного летального аллеля с 0,01 до 0,001 потребуется целых 900 поколений.

Контрольные вопросы и задания к главе III

1. Рассчитайте частоты аллелей групп крови системы AB0 в популяции англичан, где I группа крови встречается с частотой 0,462, II - 0,436, III - 0,074, IV - 0,028.

2. Изменяется ли генетический груз в популяциях человека со временем? Если да, то благодаря действию каких факторов?

3. На одном острове дикари приносили в жертву всех альбиносов до достижения ими половозрелого возраста. Изначальная частота встречаемости носителей этого фенотипа была 0,0001. Насколько она изменилась через 180 поколений?

Дополнительная литература к главе III

Айала Ф., Кайгер Дж. Современная генетика. Т. 3 // М.: Мир. 1988. 332 С.

ПОПУЛЯЦИОННАЯ ГЕНЕТИКА (позднелат. populatio, от лат. populus народ, население; генетика) - раздел генетики, посвященный изучению закономерностей изменчивости и наследственности на уровне популяции.

Как самостоятельный раздел П. г. сформировалась в начале 20 в. В 1903 г. Иогансен (W. L. Johannsen) опубликовал работу «О наследовании в популяциях и чистых линиях». В 1908 г. Харди (G. Н. Hardy) и Вейнберг (W. Weinberg) дали математическое обоснование соотношения аллелей в популяции (см. Популяция, генетика популяции). В 1926 г. С. С. Четвериков показал, что генотипическую эволюцию популяций определяют накопление мутаций (см. Мутация) и естественный отбор (см.), в 1929 г. им же были опубликованы результаты первого экспериментального исследования по генетике природных популяций. В 1931 - 1932 гг. Н. П. Дубининым, Д. Д. Ромашовым и Райтом (S. Wright) была сформулирована теория генетикоавтоматических процессов (теория дрейфа генов). Результатом всех этих исследований явилось установление четырех основных факторов, определяющих закономерности изменчивости и наследственности в популяциях: 1) мутации генов и хромосом (см. Мутация); 2) отбор, обеспечивающий дифференциальное воспроизведение особей внутри популяции; 3) дрейф генов, приводящий в условиях изоляции к изменениям концентрации аллелей (см. Изоляты); 4) миграции (смешение) популяций, ведущие к выравниванию концентрации аллелей (см. Изменчивость , Наследственность).

Особи, разделенные на популяции, сохраняют возможность скрещивания с другой особью данного вида, что обеспечивает его целостность. Сильное влияние на генетическую структуру популяции оказывают случайные отклонения в составе аллелей (см.), которые возникают в небольшой группе особей при заселении ими новых мест. Майер (Е. Mayer) назвал это явление «принципом основателей». Миграции особей из одной популяции в другую ведут к выравниванию генетических различий между популяциями, изоляция, наоборот, способствует их генетической дифференцировке. Распределение многих аллелей у человека обусловлено смешением популяций. Напр., в США обмен генами, который за последние два столетия происходил преимущественно от белых к неграм, привел к тому, что ко второй половине 20 в. негры имеют уже ок. 30% генов белого человека.

Открытие Н. П. Дубининым в 1931 -1934 гг. рецессивных летальных мутаций в популяциях дрозофилы положило начало учению о генетическом грузе популяций. Этот груз слагается из летальных, полулегальных и сублетальных изменений и может быть сегрегационным, т. е. проявляться «выщеплением» менее приспособленных гомозигот при наличии в популяции отбора в пользу гетерозигот, или может быть мутационным, т. е. проявляться в популяциях мутациями, снижающими приспособленность особей, носителей этих мутаций. Существует так наз. груз дрейфа - случайное увеличение концентраций аллелей в изолированной популяции. Частным результатом такого груза является повышение доли гомозиготных особей при инбридинге (см.) - так наз. инбредный груз или инбредная депрессия.

Объем генетического груза определяется разнообразием мутаций, имеющихся в популяции. Увеличение концентрации мутаций сдерживается отбором, поэтому каждая рецессивная мутация включена в генофонд популяции на низком уровне. Однако общее число рецессивных мутаций так велико, что каждый человек несет, напр., 3-4 летальных мутации.

Библиография: Дубинин Н. П. Эволюция популяций и радиация, М., 1966; Л евонтин Р. К. Генетические основы эволюции, пер. с англ., М., 1978; JI и Ч. Введение в популяционную генетику, пер. с англ., М., 1978, библиогр.; Меттлер Л. Ю. и Грегг Т. Г. Генетика популяций и эволюция, пер. с англ., М., 1972; P о к и ц к и й П. Ф. Введение в статистическую генетику, Минск, 1978; Четвериков С. С. О некоторых моментах эволюционного процесса с точки зрения современной генетики, в кн.: Классики сов. генетики, под ред. H. М. Жуковского, с. 133, Л., 1968; Шеппард Ф. М. Естественный отбор и наследственность, пер. с англ., М., 1970; Crow J. F. а. К i m u г а М. Ап introduction to population genetics theory, N. Y., 1970; Dobzhansky Th. Genetics of the evolutionary process, N. Y., 1970; Ford E. B. Ecological genetics, L., 1971.

Содержание статьи

ПОПУЛЯЦИОННАЯ ГЕНЕТИКА, раздел генетики, изучающий генофонд популяций и его изменение в пространстве и во времени. Разберемся подробнее в этом определении. Особи не живут поодиночке, а образуют более или менее устойчивые группировки, сообща осваивая среду обитания. Такие группировки, если они самовоспроизводятся в поколениях, а не поддерживаются только за счет пришлых особей, называют популяциями. Например, стадо семги, нерестящейся в одной реке, образует популяцию, потому что потомки каждой рыбы из года в год, как правило, возвращаются в ту же реку, на те же нерестилища. У сельскохозяйственных животных популяцией принято считать породу: все особи в ней единого происхождения, т.е. имеют общих предков, содержатся в сходных условиях и поддерживаются единой селекционной и племенной работой. У аборигенных народов популяция – это члены связанных родством стойбищ.

При наличии миграций границы популяций размыты и потому неопределимы. Например, все население Европы – потомки кроманьонцев, заселивших наш континент десятки тысяч лет назад. Изоляция древних племен, усиливавшаяся с развитием у каждого из них собственного языка и культуры, вела к различиям между ними. Но их обособленность всегда была относительной. Постоянные войны и захваты территории, а в последнее время – гигантская миграция вели и ведут к определенному генетическому сближению народов.

Приведенные примеры показывают, что под словом «популяция» следует понимать группировку особей, связанных территориальной, исторической и репродуктивной общностью.

Особи каждой популяции отличаются друг от друга, и каждая из них в чем-то уникальна. Многие из этих различий наследственные, или генетические, – они определяются генами и передаются от родителей к детям.

Совокупность генов всех особей данной популяции называют ее генофондом. Для того чтобы решать проблемы экологии, демографии, эволюции и селекции, важно знать особенности генофонда, а именно: сколь велико генетическое разнообразие в каждой популяции, каковы генетические различия между географически разделенными популяциями одного вида и между различными видами, как генофонд изменяется под действием окружающей среды, как он преобразуется в ходе эволюции, как распространяются наследственные заболевания, насколько эффективно используется генофонд культурных растений и домашних животных. Изучением этих вопросов и занимается популяционная генетика.

ОСНОВНЫЕ ПОНЯТИЯ ПОПУЛЯЦИОННОЙ ГЕНЕТИКИ

Частоты генотипов и аллелей.

Важнейшим понятием популяционной генетики является частота генотипа – доля особей в популяции, имеющих данный генотип. Рассмотрим аутосомный ген, имеющий k аллелей, A 1 , A 2 , …, A k . Пусть популяция состоит из N особей, часть которых имеет аллели A i A j . Обозначим число этих особей N ij . Тогда частота этого генотипа (P ij) определяется как P ij = N ij /N. Пусть, например, ген имеет три аллеля: A 1 , A 2 и A 3 – и пусть популяция состоит из 10000 особей, среди которых имеются 500, 1000 и 2000 гомозигот A 1 A 1 , A 2 A 2 и A 3 A 3 , а гетерозигот A 1 A 2 , A 1 A 3 и A 2 A 3 – 1000, 2500 и 3000 соответственно. Тогда частота гомозигот A 1 A 1 равна P 11 = 500/10000 = 0,05, или 5%. Таким образом мы получаем следующие наблюдаемые частоты гомо- и гетерозигот:

P 11 = 0,05, P 22 = 0,10, P 33 = 0,20,

P 12 = 0,10, P 13 = 0,25, P 23 = 0,30.

Еще одним важным понятием популяционной генетики является частота аллеля – его доля среди имеющих аллелей. Обозначим частоту аллеля A i как p i . Поскольку у гетерозиготной особи аллели разные, частота аллеля равна сумме частоты гомозиготных и половине частот гетерозиготных по этому аллелю особей. Это выражается следующей формулой: p i = P ii + 0,5Че j P ij . В приведенном примере частота первого аллеля равна p 1 = P 11 + 0,5Ч (P 12 + P 13) = 0,225. Соответственно, p 2 = 0,300, p 3 = 0,475.

Соотношения Харди – Вайнберга.

При исследовании генетической динамики популяций, в качестве теоретической, «нулевой» точки отсчета принимают популяцию со случайным скрещиванием, имеющую бесконечную численность и изолированную от притока мигрантов; полагают также, что темпы мутирования генов пренебрежимо малы и отбор отсутствует. Математически доказывается, что в такой популяции частоты аллелей аутосомного гена одинаковы для самок и самцов и не меняются из поколения в поколение, а частоты гомо- и гетерозигот выражаются через частоты аллелей следующим образом:

P ii = p i 2 , P ij = 2p i p j .

Это называется соотношениями, или законом, Харди – Вайнберга – по имени английского математика Г.Харди и немецкого медика и статистика В.Вайнберга, одновременно и независимо открывших их: первый – теоретически, второй – из данных по наследованию признаков у человека.

Реальные популяции могут значительно отличаться от идеальной, описываемой уравнениями Харди – Вайнберга. Поэтому наблюдаемые частоты генотипов отклоняются от теоретических величин, вычисляемых по соотношениям Харди – Вайнберга. Так, в рассмотренном выше примере теоретические частоты генотипов отличаются от наблюдаемых и составляют

P 11 = 0,0506, P 22 = 0,0900, P 33 = 0,2256,

P 12 = 0,1350, P 13 = 0,2138, P 23 = 0,2850.

Подобные отклонения можно частично объяснить т.н. ошибкой выборки; ведь в действительности в эксперименте изучают не всю популяцию, а лишь отдельных особей, т.е. выборку. Но главная причина отклонения частот генотипов – несомненно, те процессы, что протекают в популяциях и влияют на их генетическую структуру. Опишем их последовательно.

ПОПУЛЯЦИОННО-ГЕНЕТИЧЕСКИЕ ПРОЦЕССЫ

Дрейф генов.

Под дрейфом генов понимают случайные изменения генных частот, вызванные конечной численностью популяции. Чтобы понять, как возникает генный дрейф, рассмотрим вначале популяцию минимально возможной численности N = 2: один самец и одна самка. Пусть в исходном поколении самка имеет генотип A 1 A 2 , а самец – A 3 A 4 . Таким образом, в начальном (нулевом) поколении частоты аллелей A 1 , A 2 , A 3 и A 4 равны 0,25 каждая. Особи следующего поколения могут равновероятно иметь один из следующих генотипов: A 1 A 3 , A 1 A 4 , A 2 A 3 и A 2 A 4 . Допустим, что самка будет иметь генотип A 1 A 3 , а самец – A 2 A 3 . Тогда в первом поколении аллель A 4 теряется, аллели A 1 и A 2 сохраняют те же частоты, что и в исходном поколении – 0,25 и 0,25, а аллель A 3 увеличивает частоту до 0,5. Во втором поколении самка и самец тоже могут иметь любые комбинации родительских аллелей, например A 1 A 2 и A 1 A 2 . В этом случае окажется, что аллель A 3 , несмотря на большую частоту, исчез из популяции, а аллели A 1 и A 2 увеличили свою частоту (p 1 = 0,5, p 2 = 0,5). Колебания их частот в конце концов приведут к тому, что в популяции останется либо аллель A 1 , либо аллель A 2 ; иными словами и самец и самка будут гомозиготны по одному и тому же аллелю: A 1 или A 2 . Ситуация могла сложиться и так, что в популяции остался бы аллель A 3 или A 4 , но в рассмотренном случае этого не произошло.

Описанный нами процесс дрейфа генов имеет место в любой популяции конечной численности, с той лишь разницей, что события развиваются с гораздо меньшей скоростью, чем при численности в две особи. Генный дрейф имеет два важных последствия. Во-первых, каждая популяция теряет генетическую изменчивость со скоростью, обратно пропорциональной ее численности. Со временем какие-то аллели становятся редкими, а затем и вовсе исчезают. В конце концов, в популяции остается один-единственный аллель из имевшихся, какой именно – это дело случая. Во-вторых, если популяция разделяется на две или большее число новых независимых популяций, то дрейф генов ведет к нарастанию различий между ними: в одних популяциях остаются одни аллели, а в других – другие. Процессы, которые противодействуют потере изменчивости и генетическому расхождению популяций, – это мутации и миграции.

Мутации.

При образовании гамет происходят случайные события – мутации, когда родительский аллель, скажем A 1 , превращается в другой аллель (A 2 , A 3 или любой иной), имевшийся или не имевшийся ранее в популяции. Например, если бы в нуклеотидной последовательности «…TЦT ТГГ…», кодирующей участок полипептидной цепи «…серин-триптофан…», третий нуклеотид, Т, в результате мутации передался ребенку как Ц, то в соответствующем участке аминокислотной цепи белка, синтезирующегося в организме ребенка, вместо серина был бы расположен аланин, поскольку его кодирует триплет TЦЦ (см . НАСЛЕДСТВЕННОСТЬ) . Регулярно возникающие мутации и образовали в длинном ряду поколений всех обитающих на Земле видов то гигантское генетическое разнообразие, которое мы сейчас наблюдаем.

Вероятность, с которой происходит мутация, называется частотой, или темпом, мутирования. Темпы мутирования разных генов варьируют от 10 –4 до 10 –7 на поколение. На первый взгляд, эти величины кажутся незначительными. Однако следует учесть, что, во-первых, геном содержит много генов, а, во-вторых, что популяция может иметь значительную численность. Поэтому часть гамет всегда несет мутантные аллели, и практически в каждом поколении появляется одна или больше особей с мутациями. Их судьба зависит от того, насколько сильно эти мутации влияют на приспособленность и плодовитость. Мутационный процесс ведет к увеличению генетической изменчивости популяций, противодействуя эффекту дрейфа генов.

Миграции.

Популяции одного вида не изолированы друг от друга: всегда есть обмен особями – миграции. Мигрирующие особи, оставляя потомство, передают следующим поколениям аллели, которых в этой популяции могло вовсе не быть или они были редки; так формируется поток генов из одной популяции в другую. Миграции, как и мутации, ведут к увеличению генетического разнообразия. Кроме того, поток генов, связывающий популяции, приводит к их генетическому сходству.

Системы скрещивания.

В популяционной генетике скрещивание называют случайным, если генотипы особей не влияют на образование брачных пар. Например, по группам крови скрещивание может рассматриваться как случайное. Однако окраска, размеры, поведение могут сильно влиять на выбор полового партнера. Если предпочтение оказывается особям сходного фенотипа (т.е. со сходными индивидуальными характеристиками), то такое положительное ассортативное скрещивание ведет к увеличению в популяции доли особей с родительским генотипом. Если при подборе брачной пары предпочтение имеют особи противоположного фенотипа (отрицательное ассортативное скрещивание), то в генотипе потомства будут представлены новые сочетания аллелей; соответственно в популяции появятся особи либо промежуточного фенотипа, либо фенотипа, резко отличающегося от фенотипа родителей.

Во многих регионах мира высока частота близкородственных браков (например, между двоюродными и троюродными родственниками). Образование брачных пар на основе родства называют инбридингом. Инбридинг увеличивает долю гомозиготных особей в популяции, поскольку в этом случае высока вероятность того, что родители имеют сходные аллели. С повышением числа гомозигот возрастает и количество больных рецессивными наследственными болезнями. Но инбридинг способствует также большей концентрации определенных генов, что может обеспечить лучшую адаптацию данной популяции.

Отбор.

Различия в плодовитости, выживаемости, половой активности и т.п. приводят к тому, что одни особи оставляют больше половозрелых потомков, чем другие – с иным набором генов. Различный вклад особей с разными генотипами в воспроизводство популяции называют отбором.

Изменения нуклеотидов могут влиять, а могут и не влиять на продукт гена – полипептидную цепь и образуемый ею белок. Например, аминокислота серин кодируется шестью разными триплетами – ТЦА, ТЦГ, ТЦТ, TЦЦ, АГТ и АГЦ. Поэтому мутация может превратить один из этих триплетов в другой, но при этом не изменить самой аминокислоты. Напротив, аминокислота триптофан кодируется только одним триплетом – ТГГ, и потому любая мутация заменит триптофан на другую аминокислоту, например на аргинин (ЦГГ) или серин (ТЦГ), или даже приведет к обрыву синтезируемой полипептидной цепи, если в результате мутации появится т.н. стоп-кодон (ТГА или ТАГ). Различия между вариантами (или формами) белка могут быть незаметны для организма, но могут и существенно влиять на его жизнедеятельность. Например, известно, что когда в 6-й позиции бета-цепи гемоглобина человека вместо глутаминовой кислоты стоит другая аминокислота, а именно валин, это приводит к тяжелой патологии – серповидноклеточной анемии. Изменения в других участках молекулы гемоглобина приводят к иным формам патологии, называемым гемоглобинопатиями.

Еще большие различия в приспособленности наблюдаются по генам, определяющим размеры, физиологические признаки и поведение особей; таких генов может быть много. Отбор, как правило, затрагивает их все и может вести к формированию ассоциаций аллелей разных генов.

Генетические параметры популяции.

При описании популяций или их сравнении между собой используют целый ряд генетических характеристик.

Полиморфизм.

Популяция называется полиморфной по данному локусу, если в ней встречается два или большее число аллелей. Если локус представлен единственным аллелем, говорят о мономорфизме. Исследуя много локусов, можно определить среди них долю полиморфных, т.е. оценить степень полиморфизма, которая является показателем генетического разнообразия популяции.

Гетерозиготность.

Важной генетической характеристикой популяции является гетерозиготность – частота гетерозиготных особей в популяции. Она отражает также генетическое разнообразие.

Коэффициент инбридинга.

С помощью этого коэффициента оценивают распространенность близкородственных скрещиваний в популяции.

Ассоциация генов.

Частоты аллелей разных генов могут зависеть друг от друга, что характеризуется коэффициентами ассоциации.

Генетические расстояния.

Разные популяции отличаются друг от друга по частоте аллелей. Для количественной оценки этих различий предложены показатели, называемые генетическими расстояниями.

Различные популяционно-генетические процессы по-разному влияют на эти параметры: инбридинг приводит к уменьшению доли гетерозиготных особей; мутации и миграции увеличивают, а дрейф уменьшает генетическое разнообразие популяций; отбор изменяет частоты генов и генотипов; генный дрейф увеличивает, а миграции уменьшают генетические расстояния и т.д. Зная эти закономерности, можно количественно исследовать генетическую структуру популяций и прогнозировать ее возможные изменения. Этому способствует солидная теоретическая база популяционной генетики – популяционно-генетические процессы математически формализованы и описаны уравнениями динамики. Для проверки различных гипотез о генетических процессах в популяциях разработаны статистические модели и критерии.

Прилагая эти подходы и методы к исследованию популяций человека, животных, растений и микроорганизмов, можно решить многие проблемы эволюции, экологии, медицины, селекции и др. Рассмотрим несколько примеров, демонстрирующих связь популяционной генетики с другими науками.

ПОПУЛЯЦИОННАЯ ГЕНЕТИКА И ЭВОЛЮЦИЯ

Нередко думают, что основная заслуга Чарлза Дарвина в том, что он открыл явление биологической эволюции. Однако это совсем не так. Еще до издания его книги Происхождение видов (1859) биологи сходились во мнении, что старые виды порождают новые. Разногласия имелись лишь в понимании того, как именно это могло происходить. Наиболее популярной была гипотеза Жана Батиста Ламарка, согласно которой в течение жизни каждый организм изменяется в направлении, соответствующем среде, в которой он живет, и эти полезные изменения («благоприобретенные» признаки) передаются потомкам. При всей своей привлекательности эта гипотеза не прошла проверку генетическими экспериментами.

Напротив, эволюционная теория, разработанная Дарвином, утверждала, что 1) особи одного и того же вида отличаются друг от друга по многим признакам; 2) эти различия могут обеспечить приспособление к разным условиям среды; 3) эти различия наследственны. В терминах популяционной генетики данные положения можно сформулировать так: больший вклад в следующие поколения дают те особи, которые имеют наиболее подходящие для данной среды генотипы. Изменись среда, и начнется отбор генов, более соответствующих новым условиям. Таким образом, из теории Дарвина следует, что эволюционируют генофонды .

Эволюцию можно определить как необратимое изменение генофондов популяций во времени. Совершается она путем накопления мутационных изменений ДНК, возникновения новых генов, хромосомных преобразований и др. Важную роль при этом играет то, что гены обладают способностью удваиваться (дуплицироваться), а их копии – встраиваться в хромосомы. В качестве примера вновь обратимся к гемоглобину. Известно, что гены альфа- и бета-цепи произошли путем дупликации некоего предкового гена, который, в свою очередь, произошел от предка гена, кодирующего белок миоглобин – переносчик кислорода в мышцах. Эволюционно это привело к возникновению гемоглобина – молекулы с тетрамерной структурой, состоящей из четырех полипептидных цепей: двух альфа- и двух бета-. После того как природа «нашла» тетрамерную структуру гемоглобина (у позвоночных), остальные типы структур для транспорта кислорода оказались практически неконкурентоспособными. Затем уже в течение десятков миллионов лет возникали и отбирались лучшие варианты гемоглобина (свои – в каждой эволюционной ветви животных), но в рамках тетрамерной структуры. Сегодняшний отбор по этому признаку у человека стал консервативным: он «охраняет» единственный прошедший миллионы поколений вариант гемоглобина, и любая замена в любой из цепей этой молекулы приводит к болезни. Однако многие виды позвоночных имеют два или более равноценных вариантов гемоглобина – отбор «поощрял» их одинаково. И у человека есть белки, по которым эволюция «оставила» несколько вариантов.

Популяционная генетика позволяет оценить время, когда произошли те или иные события в эволюционной истории. Вновь вернемся к примеру с гемоглобином. Пусть, например, желательно оценить время, когда произошло разделение предковых генов альфа- и бета-цепей и, следовательно, возникла такая система дыхания. Мы анализируем структуру этих полипептидных цепей у человека или какого-либо животного и, сравнивая их, определяем, насколько отличаются друг от друга соответствующие нуклеотидные последовательности. Поскольку в начале своей эволюционной истории обе предковые цепи были идентичными, то, зная скорость замены одного нуклеотида на другой и число различий в сравниваемых цепях, можно узнать время от момента их дупликации. Таким образом, здесь белки выступают в качестве своеобразных «молекулярных часов». Другой пример. Сравнивая гемоглобин или другие белки у человека и приматов, можно оценить, сколько миллионов лет назад существовал наш общий с ними предок. В настоящее время в качестве молекулярных часов используют «безмолвные», не кодирующие белки участки ДНК, менее подверженные внешним воздействиям.

Популяционная генетика позволяет заглянуть в глубь веков и проливает свет на такие события в эволюционной истории человечества, которые невозможно было бы выяснить по современным археологическим находкам. Так, совсем недавно, сравнивая генофонды людей из различных частей света, большинство ученых сошлись на том, что общий предок всех рас современного человека возник примерно 150 тысяч лет назад в Африке, откуда он и расселился по всем континентам через Переднюю Азию. Более того, сопоставляя ДНК людей в разных регионах Земли, можно оценить время, когда популяции человека стали расти в численности. Исследования показывают, что это произошло нескольких десятков тысяч лет назад. Таким образом, в изучении истории человечества популяционно-генетические данные начинают играть столь же важную роль, как и данные археологии, демографии и лингвистики.

ПОПУЛЯЦИОННАЯ ГЕНЕТИКА И ЭКОЛОГИЯ

Обитающие в каждом регионе виды животных, растений и микроорганизмов образуют целостную систему, известную как экосистема. Каждый вид представлен в ней своей, уникальной популяцией. Оценить экологическое благополучие данной территории или акватории позволяют данные, характеризующие генофонд ее экосистемы, т.е. генофонд слагающих ее популяций. Именно он обеспечивает существование экосистемы в данных условиях. Поэтому за изменениями в экологической обстановке региона можно проследить, изучая генофонды популяций обитающих там видов.

Осваивая новые территории, прокладывая нефте- и газопроводы, следует заботиться о сохранении и восстановлении природных популяций. Популяционная генетика уже предложила свои меры, например выделение природных генетических резерватов. Они должны быть достаточно обширными, чтобы содержать основной генофонд растений и животных данного региона. Теоретический аппарат популяционный генетики позволяет определить ту минимальную численность, которая необходима для поддержания генетического состава популяции, чтобы в ней не было т.н. инбридинговой депрессии, чтобы она содержала основные генотипы, присущие данной популяции, и могла воспроизводить эти генотипы. При этом каждый регион должен иметь свои собственные природные генетические резерваты. Нельзя восстанавливать загубленные сосняки Севера Западной Сибири, завозя семена сосны из Алтая, Европы или Дальнего Востока: через десятки лет может оказаться, что «чужаки» генетически плохо приспособлены к местным условиям. Вот почему экологически грамотное промышленное освоение территории должно обязательно включать популяционные исследования региональных экосистем, позволяющие выявить их генетическое своеобразие.

Сказанное относится не только к растениям, но и к животным. Генофонд той или иной популяции рыб эволюционно приспособлен именно к тем условиям, в которых он обитал в течение многих поколений. Поэтому интродукция рыб из одного природного водоема в другой порой приводит к непредсказуемым последствиям. Например, попытки развести сахалинскую горбушу в Каспии оказались безуспешными, ее генофонд оказался не в состоянии «освоить» новое местообитание. Та же горбуша, интродуцированная в Белое море, покинула его и ушла в Норвегию, образовав там временные стада «русского лосося».

Не надо думать, что основными объектами заботы о природе должны быть только экономически ценные виды растений и животных, такие, как древесные породы, пушные звери или промысловые рыбы. Травянистые растения и мхи, мелкие млекопитающие и насекомые – их популяции и их генофонды наравне со всеми другими обеспечивают нормальную жизнь территории. То же относится к микроорганизмам – тысячи их видов населяют почву. Изучение почвенных микробов – задача не только микробиологов, но и популяционных генетиков.

Изменение генофонда популяций при грубых вмешательствах в природу выявляется не сразу. Могут пройти десятилетия, прежде чем станут очевидными последствия в виде исчезновения одних популяций, а за ними – других, связанных с первыми.

ПОПУЛЯЦИОННАЯ ГЕНЕТИКА И МЕДИЦИНА

Один из насущнейших вопросов человечества – как лечить наследственные болезни. Однако до недавнего времени сама постановка такого вопроса казалась фантастической. Речь могла идти только о профилактике наследственных заболеваний в форме медико-генетического консультирования. Опытный врач-генетик, изучая историю болезни пациента и исследуя, сколь часто наследственное заболевание проявлялось среди его близких и дальних родственников, давал заключение о том, может ли у пациента появиться ребенок с такой патологией; и если может, то какова вероятность данного события (например, 1/2, 1/10, или 1/100). Основываясь на этой информации, супруги сами решали, иметь им ребенка или не иметь.

Бурное развитие молекулярной биологии существенно приблизило нас к заветной цели – лечению наследственных болезней. Для этого прежде всего необходимо найти среди множества генов человека тот, который ответствен за болезнь. Популяционная генетика помогает решить эту сложную задачу.

Известны генетические метки – т.н. ДНК-маркеры, которые позволяют отметить в длинной нити ДНК, скажем, каждую тысячную или десятитысячную «бусинку». Исследуя больного, его родственников и здоровых лиц из популяции, можно установить, какой из маркеров сцеплен с геном болезни. С помощью специальных математических методов популяционные генетики выявляют тот участок ДНК, в котором расположен интересующий нас ген. После этого в работу включаются молекулярные биологи, которые детально анализируют этот отрезок ДНК и находят в нем дефектный ген. Таким способом картированы гены большинства наследственных болезней. Теперь врачи получили возможность в первые месяцы беременности прямо судить о здоровье будущего ребенка, а родители – решать вопрос, сохранять или не сохранять беременность, если заранее известно, что ребенок родится больным. Более того, уже предпринимаются попытки исправлять допущенные природой ошибки, устранять «поломки» в генах.

С помощью ДНК-маркеров можно не только искать гены болезней. Используя их, проводят своеобразную паспортизацию индивидов. Такая ДНК-идентификация – распространенный вид судебно-медицинской экспертизы, позволяющий определить отцовство, опознать перепутанных в роддоме детей, выявить личность участников преступления, жертв катастроф и военных действий.

ПОПУЛЯЦИОННАЯ ГЕНЕТИКА И СЕЛЕКЦИЯ

Согласно теории Дарвина, отбор в природе направлен только на непосредственную пользу – выжить и размножиться. Например, у рыси окраска шерсти палево-дымчатая, а у льва – песчано-желтая. Окраска, как маскировочная одежда, служит тому, чтобы особь сливалась с местностью. Это позволяет хищникам незаметно подкрадываться к жертве или выжидать. Поэтому хотя цветовые вариации постоянно появляются в природе, дикие кошки с такой «меткой» не выживают. Лишь человек с его вкусовыми пристрастиями создает все условия для жизни домашних кошек самых разнообразных окрасок.

Переходя к оседлому образу жизни, люди уходили от охоты на животных и собирательства растений к их воспроизводству, резко уменьшая свою зависимость от катаклизмов природы. Тысячелетиями размножая особей с нужными признаками и ведя тем самым отбор соответствующих генов из генофондов популяций, люди постепенно создали все те сорта домашних растений и породы животных, что нас окружают. Это был тот же отбор, что проводила миллионами лет природа, но только теперь в роли природы выступил человек, направляемый разумом.

С началом развития популяционный генетики, т.е. с середины 20 в., селекция пошла по научному пути, а именно по пути прогнозирования ответа на отбор и выбора оптимальных вариантов селекционной работы. Например, в скотоводстве племенная ценность каждого животного вычисляется сразу по многим признакам продуктивности, определяемым не только у данного животного, но и у его родственников (матерей, сестер, потомков и др.). Все это сводится в некий общий индекс, учитывающий как генетическую обусловленность признаков продуктивности, так и их экономическую значимость. Это особенно важно при оценке производителей, у которых собственную продуктивность определить невозможно (например, у быков в молочном скотоводстве или у петухов яичных пород). С внедрением искусственного осеменения появилась необходимость в разносторонней популяционной оценке племенной ценности производителей при их использовании в разных стадах с разным уровнем кормления, содержания и продуктивности. В селекции растений популяционный подход помогает количественно оценить генетическую способность линий и сортов давать перспективные гибриды и прогнозировать их приспособленность и продуктивность в разных по климату и почвам регионах.