К какому типу туманностей относится бто. Большая ВселеннаяПланетарные туманности

21.09.2019

Во Вселенной, кроме звезд, планет и галактик, имеются и диффузные туманности. Их роль в развитии космического пространства огромна: именно в недрах туманностей зарождаются звезды. Туманности состоят из двух компонентов – газа и пыли. Газ имеет доисторическое происхождение, т.е. он сформировался на заре возникновения Вселенной, именно в это время образовались водород и гелий – основные составляющие первых звезд. Более тяжелые элементы появились позже, когда начали происходить вспышки звезд и выбросы в межзвездную среду.

Пыль, входящая в состав туманностей, состоит из смеси углерода в разных стадиях сцепления и силикатов, также имеются следы и других органических веществ. Газ – это в основном водород.

В принципе, туманности представляют собой области с уплотненной под влиянием гравитации межзвездной средой, в которой сформировались облака. Увеличиваясь в размерах, они притянули к себе часть материи из окружающей среды. Иногда эти облака становятся видимыми из-за того, что относительно молодые звезды, входящие в их состав, возбуждают атомы. В результате туманность приобретает яркость.

Классификация туманностей

В небе много туманностей. Их делят на три типа: эмиссионные туманности, светлые (они светятся отраженным светом) и темные. За основу такого деления берется внешний вид туманностей и явления, характерные для них. Эмиссионные туманности – яркие, так как атомы возбуждаются под действием ультрафиолетового излучения близлежащих молодых звезд. Сами туманности также превращаются в источник радиации.

Светлые туманности не излучают радиацию, а отражают свет ближайших звезд. Классический пример светлой туманности – голубоватая туманность, окружающая рассеянное звездное скопление Плеяд. Темные туманности представляют собой плотную концентрацию пыли, активно поглощающую свет. Они становятся видимыми лишь при условии нахождения за ними источника блеска.

Многие туманности легко различимы, иногда даже невооруженным глазом. Вполне достаточно воспользоваться биноклем или небольшим любительским телескопом. Такие туманности зафиксированы в известном каталоге Мессье. Этот французский астроном составил его во второй половине XVIII в..

Самая яркая туманность нашего полушария – туманность Ориона, в каталоге она имеет обозначение М42. Пожалуй, это первый небесный объект, на который любители неба нацеливают свои астрономические инструменты длинными зимними ночами.

Есть и много других очень красивых туманностей. Вот несколько примеров.

Туманность в созвездии Стрельца

Туманность Лагуна, М8, расположена в созвездии Стрельца. В этой области небесного свода находится много туманностей. Это очень “заселенный” район Млечного Пути, здесь много газовых облаков.

М8 находится рядом с рассеянным звездным скоплением – такое сочетание встречается нередко. Как уже отмечалось, туманности являются зонами звездообразования и часто внутри них или рядом располагаются скопления молодых и ярких звезд. Уже при помощи небольшого бинокля можно рассмотреть некоторые детали М8, а используя более мощный бинокль, - увидеть характерные особенности, например темную полосу внутри облака.

В рассеянном звездном скоплении NGC 6530 видны примерно 40 звезд, звездная величина которых от 8 до 13. Их свет возбуждает атомы туманности, в результате она становится видимой.

В М8 имеются и глобулы Бока, темные зоны, диаметр которых равен десяткам тысяч а.е. Расстояние до М8 составляет 3000-4000 световых лет. В созвездии Стрельца находится и М20, типичная эмиссионная туманность. Имеется в виду туманность Трифида (“разделенная на три части”). Название отражает ее форму.

Эта туманность была открыта астрономом Ле Жантилем в 1750 г., но ее первое описание появилось только в 1764г. Это сделал Мессье. Уильям Гершель определил три линии, которые делят эту туманность на три треугольных сектора. С помощью бинокля можно увидеть самую блестящую часть туманности. Она смотрится как круглое пятно диаметром до 10’. Существование темных зон, которые делят облако на три части, связано с присутствием в его составе пыли и холодных газов.

Расстояние до М20 составляет примерно 3200 световых лет. В созвездии Стрельца, в середине Млечного Пути, находится и туманность М24, наблюдаемая невооруженным глазом. Она была открыта раньше, еще до того, как Мессье внес ее в свой каталог. Этот астроном полагал, что ее диаметр составляет около 1,5°.

Туманность Орел в созвездии Змеи

М16, туманность Орел, была открыта Де Шезо в 1746 г. Мессье зафиксировал ее через два года. Эта туманность располагается на границе созвездий Щита и Змеи. Внутри ее имеется темная область, которая вытягивается от северной к центральной части облака.

Звездное скопление насчитывает несколько десятков звезд, некоторые из них очень слабые, красного цвета. Звездная величина самых ярких звезд составляет от 8 до 11, они относятся к спектральным классам О и В, т.е. это классические горячие и молодые звезды. М16 – это эмиссионная туманность, но в ней присутствует и элемент отражательной туманности. Расстояние до нее составляет от 5000 до 11 000 световых лет, в среднем около 7500.

Планетарные туманности

Кроме диффузных, существуют и планетарные туманности. Их название связанно с тем, что в начале наблюдатели часто путали их с планетами, так как они имеют круглую форму.

Эти туманности образуются из эмиссий газовой оболочки звезд на более поздних стадиях их эволюции.

Наиболее известная планетарная туманность М57 расположена в созвездии Лиры. Ее сложно идентифицировать из-за слабой поверхностной освещенности. Есть и туманность М27 – Гантель, она находится в созвездии Лисицы. Эта туманность была открыта Мессье в 1764 г. Он, наблюдая за ней в телескоп, определил овальную форму образования. В небольших любительских телескопах эта туманность предстает в форме “песочных часов”. М27 расположена на расстоянии 500-1000 световых лет от Земли. Ее диаметр по максимуму составляет около 2,5 светового года

Смотрящие из глубин космоса загадочные объекты давным-давно привлекали интерес людей, наблюдающих за небом. Еще древнегреческий ученый Гиппарх в своем каталоге отметил наличие в ночном небе нескольких туманных объектов. Его коллега Птолемей пополнил список еще пятью туманностями. В XVII веке Галилей изобрел телескоп и с его помощью смог увидеть туманности Ориона и Андромеды. С тех пор по мере совершенствования телескопов и других приборов начались новые открытия в космическом пространстве. А туманности отнесли к отдельному классу звездных объектов.

Со временем известных туманностей стало очень много. Они начали мешать ученым и астрономам в поисках новых объектов. В конце XVIII века, изучая определенные объекты – кометы, Шарль Мессье составил «каталог диффузных неподвижных объектов», которые были похожи на кометы. Но из-за отсутствия достаточной технической поддержки в этот каталог вошли как туманности, так и галактики вместе с шаровыми звездными скоплениями.

Так же, как совершенствовались телескопы, развивалась и сама астрономия. Понятие «туманность» обретало все новые краски и постоянно уточнялось. Некоторые виды туманностей идентифицировали в звездные скопления, некоторые отнесли к поглощающим, а в 20-х годах прошлого века Хаббл смог установить природу туманностей и выделить области галактик.

Портал сайт расскажет о теориях возникновения туманностей, их примерном количестве, типах и удаленности от нашей планеты. Портал оперируется сугубо научно-проверенными фактами и самыми популярными идеями.

Классификация и типы туманностей на портале сайт

Первоначальный принцип, по которому квалифицируют туманности, заключается в поглощении или рассеивании (излучении) ими света. Данный критерий делит туманности на светлые и темные. Излучение светлых зависит от их происхождения. А источники энергии, которые возбуждают их излучение, зависят от собственной природы. Очень часто в туманности могут действовать не один, а два механизма излучения. Темные можно увидеть только благодаря поглощению расположенных за ними источников излучения.

Но если первый принцип классификации точный, то второй (деление туманностей на пылевые и газовые), является условным принципом. Каждая туманность содержит пыль и газ. Это деление обусловлено разными механизмами излучения и способами наблюдения. Наличие пыли лучше всего наблюдается при процессе поглощения излучения темными туманностями, которые размещены за источниками. Собственное излучение газовых компонентов туманности просматривается при ее ионизации ультрафиолетом или при нагревании межзвездной среды. Последний процесс возможен после удара в нее волны, которая образовалась после взрыва сверхновой звезды.

Темная туманность представлена в виде плотного, чаще всего молекулярного облака межзвездной пыли и газа. Поглощая свет, облако становится непрозрачным. Чаще всего темные туманности видны на фоне светлых. Крайне редко ученые замечают их на фоне Млечного Пути. Их называют гигантскими глобулами.

Поглощение света Av у темных колеблется в больших пределах. Может достигать показателей: от 1–10 m до 10–100 m. Строение туманностей с большим поглощением можно изучить только благодаря методам субмиллиметровой астрономии и радиоастрономии, при наблюдениях по инфракрасному излучению и по молекулярным радиолиниям. Часто в самой туманности обнаруживаются отдельные уплотнения, имеющие показатель Av до 10000 m. По теориям передовых астрофизиков там формируются звезды.

В полупрозрачных частях туманностей в оптическом диапазоне отлично видно волокнистую структуру. Общая вытянутость и волокна связаны с присутствием магнитных полей, которые затрудняют перемещение вещества поперек магнитогидродинамических неустойчивостей и силовых линий. Эта связь происходит из-за того, что пылинки заряжены электричеством.

Еще одним ярким типом туманностей является отражательная туманность. Это газово-пылевые облака, подсвеченные звездами. Если звезды расположены в межзвездном облаке или возле него, но не сильно горячи, чтобы уменьшить вокруг себя количество водорода, то главным источником оптического излучения самой туманности становится рассеиваемый межзвездной пылью свет звезд. Яркий пример подобного явления находится вокруг звезд Плеяды.

Большая часть отражательных туманностей находится поблизости плоскости Млечного Пути. В некоторых случаях наблюдается наличие таких туманностей на высоких галактических широтах. Эти молекулярные облака имеют разные размеры, форму, плотность и массу и подсвечиваются совместным излучением звезд Млечного Пути. Их трудно изучить, поскольку поверхностная яркость очень низкая. Иногда, появляясь на изображениях галактик, на фотографиях видны несуществующие детали – перемычки, хвосты и т. п.

Небольшая часть отражательных туманностей имеет кометообразный вид. Их называют кометарными. В заглавии такой туманности, как правило, находится переменная звезда по типу Тельца. Она освещает туманность. Они переменны в яркости и имеют маленькие размеры примерно сотые доли парсека.

Световое эхо – самая редкая разновидность отражательной туманности. Яркий пример – образовавшаяся вспышка Новой звезды в созвездии Персея. Эта вспышка подсветила пыль, в результате чего образовавшаяся туманность просматривалась несколько лет. И при этом в космосе она двигалась со скоростью света. Помимо светового эха после таких происшествий образуются газовые туманности.

Большинство отражательных туманностей располагает тонковолокнистой структурой, то есть системой практически параллельных волокон. Их толщина может достигать нескольких сотых долей парсека. Данные волокна происходят в результате проникания магнитным полем в желобковую неустойчивость туманности. Волокна пыли и газа раздвигают силовые линии в магнитном поле и просачиваются между ними.

Такие свойства пыли, как альбедо, форма, ориентация пылинок, индикатор рассеивания и размер дали ученым и астронавтам возможность изучить распределение поляризации света и его яркости по поверхности отражательных туманностей.

Ионизованные излучением туманности – это участки межзвездного газа, которые сильно ионизованы излучением звезд. Это излучение также может появляться и из других источников. Более всего подобные туманности изучаются в областях ионизованного водорода, как правило, это зона Н II. В таких зонах вещество полностью ионизовано. Его температура составляет около 104 К. Нагревается из-за внутреннего ультрафиолетового излучения. Внутри зон Н II звездное излучение в Лаймановском континууме превращается в субординантно-серийное излучение (соответствуя теореме Росселанда). Из-за этого в спектре туманностей находятся яркие линии серии Бельмера и линии Лайман-альфа.

К таким туманностям относятся также зоны ионизированного углерода – С II. Углерод в них полностью ионизован светом звезд. Зоны С II, как правило, расположены вокруг зон Н II. Они получаются из-за низкого потенциала ионизации углерода в сравнении с водородом. Также они могут образоваться вокруг звезд с высоким спектральным классом в плотностях межзвездной среды. Ионизованные излучением туманности возникают еще вокруг сильных рентгеновских источников. У них более высокие температуры, нежели в зонах Н II, и сравнительно большая степень ионизации.

Самой распространенной разновидностью эмиссионных туманностей считаются планетарные туманности. Они созданы истекающими верхними слоями атмосфер звезд. Такая туманность светится и расширяется в оптическом диапазоне. Впервые их открыл в XVII веке Гершель и именовал их так из-за внешнего сходства с дисками планет. Но не все планетарные туманности представляют форму диска, некоторые имеют округлую форму кольца. Внутри таких туманностей наблюдается тонкого типа структура в виде спиралей, струй и мелких глобул. Такие туманности расширяются со скоростью 20 км/с, а масса их равна 0,1 массы Солнца. Живут они около 10 тысяч лет.

Портал сайт подает только проверенную и свежую информацию. Мы перенесем Вас в таинственный мир космоса. И благодаря астрономам и астрофизикам туманности уже не являются такой огромной загадкой, как были ранее.

Помимо обычных, долгоживущих, туманных образований существуют кратковременные, созданные ударными волнами. Они исчезают тогда, когда исчезает кинетическая энергия движущегося газа. Существует несколько источников для возникновения таких ударных волн. Чаще всего – это результат взрыва звезды. Реже – звездный ветер, вспышки новых и сверхновых звезд. В любом случае присутствует один источник выброса подобного вещества – звезда. Туманности такого происхождения имеют форму расширяющейся оболочки или форму сферы. Вещество, которое выбросилось в результате взрыва, может иметь различные скорости от сотен до тысяч км/с, из-за этого температура газа за ударной волной достигает не миллионов, а миллиардов градусов.

Нагретый до огромных температур газ излучается в рентгеновском диапазоне как в спектральных линиях, так и в непрерывном спектре. В спектральных оптических линиях он слабо светится. При встрече с неоднородностью межзвездной среды ударная волна огибает уплотнения. Внутри самого уплотнения распространяется собственная ударная волна. Она же вызывает излучение в линиях спектра оптического диапазона. В результате создаются яркие волокна, которые отлично просматриваются на фотографиях.

Самые яркие туманности, возникшие после ударных волн, созданы взрывами сверхновых звезд. Их называют остатками вспышек звезд. Они играют далеко не последнюю роль в формировании формы межзвездного газа. Они характеризуются малогабаритностью, слабостью и недолговечностью.

Существует еще один тип туманностей. Этот тип также создан впоследствии возникновения ударной волны. Но основная причина заключается в звездном ветре от звезд Вольфа – Райе. Звезды Вольфа имеют довольно мощный ветровой поток массы и скорость истечения. Они образуют туманности средних размеров с очень яркими волокнами. Сравнивая их с остатками вспышек сверхновых звезд, ученные утверждают, что радиоизлучение таких туманностей обладает тепловой природой. Туманности, которые расположены вокруг звезд Вольфа, живут недолго. Их существование напрямую зависит от продолжительности присутствия звезды в стадии звезды Вольфа – Райе.

Абсолютно аналогичные туманности находятся вокруг О-звезд. Это очень яркие горячие звезды, которые относятся к спектральному классу О. Они обладают сильным звездным ветром. В отличие от туманностей, расположенных вокруг звезд Вольфа – Райе, туманности О-звезд менее яркие, но имеют намного большие размеры и продолжительность существования.

Самые распространенные туманности находятся в областях звездообразования. Мало-скоростные ударные волны создаются в областях межзвездной среды. Именно в них происходит звездообразование. Такой процесс влечет за собой нагрев газа до сотен и даже тысяч градусов, частичное разрушение молекул, нагрев самой пыли, возбуждение молекулярных уровней. Подобные ударные волны имеют вид вытянутых туманностей и, как правило, светятся в инфракрасном диапазоне. Яркий пример подобного явления просматривается в созвездии Ориона.

Спектральный анализ. Чтобы проанализировать спектральный состав излучения туманности, часто используют бесщелевой спектрограф. В простейшем случае вблизи фокуса телескопа помещают вогнутую линзу, превращающую сходящийся пучок света в параллельный. Его направляют на призму или дифракционную решетку, расщепляющую пучок в спектр, а затем выпуклой линзой фокусируют свет на фотопластинке, получая при этом не одно изображение объекта, а несколько - по числу линий излучения в его спектре. Однако изображение центральной звезды при этом растягивается в линию, поскольку у нее непрерывный спектр.
В спектрах газовых туманностей представлены линии всех важнейших элементов: водорода, гелия, азота, кислорода, неона, серы и аргона. Причем, как и везде во Вселенной, водорода и гелия оказывается гораздо больше остальных.
Возбуждение атомов водорода и гелия в туманности происходит не так, как в лабораторной газоразрядной трубке, где поток быстрых электронов, бомбардируя атомы, переводит их в более высокое энергетическое состояние, после чего атом возвращается в нормальное состояние, излучая свет. В туманности нет таких энергичных электронов, которые могли бы своим ударом возбудить атом, т.е. «забросить» его электроны на более высокие орбиты. В туманности происходит «фотоионизация» атомов ультрафиолетовым излучением центральной звезды, т.е. энергии пришедшего кванта достаточно, чтобы вообще оторвать электрон от атома и пустить его в «свободный полет». В среднем проходит 10 лет, пока свободный электрон встретится с ионом, и они вновь объединятся (рекомбинируют) в нейтральный атом, выделив энергию связи в виде квантов света. Рекомбинационные линии излучения наблюдаются в радио-, оптическом и инфракрасном диапазонах спектра.
Наиболее сильные линии излучения у планетарных туманностей принадлежат атомам кислорода, потерявшим один или два электрона, а также азоту, аргону, сере и неону. Причем они излучают такие линии, которые никогда не наблюдаются в их лабораторных спектрах, а появляются только в условиях, характерных для туманностей. Эти линии называют «запрещенными». Дело в том, что атом обычно находится в возбужденном состоянии менее миллионной доли секунды, а затем переходит в нормальное состояние, излучая квант. Однако существуют некоторые уровни энергии, между которыми атом совершает переходы очень «неохотно», оставаясь в возбужденном состоянии секунды, минуты и даже часы. За это время в условиях относительно плотного лабораторного газа атом обязательно сталкивается со свободным электроном, который изменяет его энергию, и переход исключается. Но в крайне разреженной туманности возбужденный атом долго не сталкивается с другими частицами, и, наконец, совершается «запрещенный» переход. Именно поэтому впервые обнаружили запрещенные линии не физики в лабораториях, а астрономы, наблюдая туманности. Поскольку в лабораторных спектрах этих линий не было, некоторое время даже считалось, что они принадлежат неизвестному на Земле элементу. Его хотели назвать «небулий», но недоразумение вскоре прояснилось. Эти линии видны в спектрах как планетарных, так и диффузных туманностей. В спектрах таких туманностей есть и слабое непрерывное излучение, возникающее при рекомбинации электронов с ионами.
На спектрограммах туманностей, полученных со щелевым спектрографом, линии часто выглядят изломанными и расщепленными. Это - эффект Доплера, указывающий на относительное движение частей туманности. Планетарные туманности обычно расширяются радиально от центральной звезды со скоростью 20-40 км/с. Оболочки сверхновых расширяются гораздо быстрее, возбуждая перед собой ударную волну. У диффузных туманностей вместо общего расширения обычно наблюдается турбулентное (хаотическое) движение отдельных частей.
Важная особенность некоторых планетарных туманностей - стратификация их монохроматического излучения. Например, излучение однократно ионизованного атомарного кислорода (потерявшего один электрон) наблюдается в обширной области, на большом расстоянии от центральной звезды, а двукратно ионизованные (т.е. потерявшие два электрона) кислород и неон видны лишь во внутренней части туманности, тогда как четырехкратно ионизованный неон или кислород заметны лишь в центральной ее части. Этот факт объясняется тем, что необходимые для более сильной ионизации атомов энергичные фотоны не достигают внешних областей туманности, а поглощаются газом уже недалеко от звезды.
По химическому составу планетарные туманности весьма разнообразны: элементы, синтезированные в недрах звезды, у некоторых из них оказались подмешанными к веществу сброшенной оболочки, а у других - нет. Еще сложнее состав остатков сверхновых: сброшенное звездой вещество в значительной степени смешано с межзвездным газом и, кроме того, разные фрагменты одного остатка иногда имеют различный химический состав (как у Кассиопеи А). Вероятно, это вещество выбрасывается с различных глубин звезды, что дает возможность проверять теорию эволюции звезд и взрыва сверхновых.

July 31st, 2010

Туманности. Часть I.

ТУМАННОСТИ . Раньше астрономы называли так любые небесные объекты, неподвижные относительно звезд, имеющие, в отличие от них, диффузный, размытый вид, как у маленького облачка (употребляемый в астрономии для «туманности» латинский термин nebula означает «облако»). Со временем выяснилось, что некоторые из них, например, туманность в Орионе, состоят из межзвездного газа и пыли и принадлежат нашей Галактике. Другие, «белые» туманности, как в Андромеде и в Треугольнике, оказались гигантскими звездными системами, подобными Галактике. Поэтому ученые пришли к выводу, что туманность — межзвездное облако, состоящее из пыли, газа и плазмы, выделяющееся своим излучением или поглощением по сравнению с окружающей его межзвёздной средой.

Типы туманностей . Туманности разделяют на следующие основные типы: диффузные туманности, или области H II, такие, как Туманность Ориона; отражательные туманности, как туманность Меропы в Плеядах; темные туманности, как Угольный Мешок, которые обычно связаны с молекулярными облаками; остатки сверхновых, как туманность Сеть в Лебеде; планетарные туманности, как Кольцо в Лире.

Вот это - NGC 2174 - яркая туманность в созвездии Орин.

NGC 2237 — эмиссионная туманность в созвездии Единорог. Является областью ионизированного водорода, где происходят процессы звездообразования.

Туманность Полумесяц. Или другое название - NGC 6888 (другое обозначение — LBN 203) — эмиссионная туманность в созвездии Лебедь.

Туманность Медуза, обычно едва уловимая и неяркая, запечатлена на этом прекрасном телескопическом изображении, представленном в условных цветах. На небе туманность располагается у ног небесных Близнецов, а по ее бокам находятся звезды μ и η Близнецов. Сама туманность Медуза на картинке находится внизу справа. Это как бы светящийся серп эмиссионного газа с свисающими щупальцами. Туманность Медуза является частью остатка сверхновой IC 443 — расширяющегося пузыря, оставшегося от взрыва массивной звезды. Первый свет от того взрыва дошел до Земли 30 тысяч лет назад. Также как и в ее сестре, плавающей по космическим морям, Крабовидной туманности, в остатке IC 443 живет нейтронная звезда — сжавшееся ядро звезды. Туманность Медуза находится в пяти тысячах световых лет от нас. Изображение покрывает область размером 300 световых лет. Остальное же поле на изображении занимает эмиссионная туманность Шарплес 249.

Туманность в созвездии Тукан или NGC 346 относится к классу эмиссионных, то есть представляет собой облако горячего газа и плазмы. Ее протяженность составляет около 200 световых лет. Причиной высокой температуры NGC 346 является большое количество молодых звезд в регионе. Возраст большинства светил составляет всего несколько миллионов лет. Для сравнения, возраст Солнца составляет около 4, 5 миллиарда лет.

Крабовидная туманность (M1, NGC 1952, разг. «Краб») — газообразная туманность в созвездии Тельца, являющаяся остатками сверхновой. Расположена на расстоянии около 6500 световых лет от Земли, имеет диаметр в 6 световых лет и расширяется со скоростью в 1000 км/с. В центре туманности находится нейтронная звезда.

NGC 1499 (другое обозначение — LBN 756, туманность Калифорния) — эмиссионная туманность в созвездии Персей. Обладает красноватым цветом, а по форме напоминает очертания американского штата Калифорния. Протяжённость туманности составляет около 100 световых лет, расстояние от Земли — 1500 световых лет.

Туманность Вуаль, также туманность Петля или туманность Рыбачья сеть — диффузная туманность в созвездии Лебедя, огромный и относительно тусклый остаток сверхновой. Звезда взорвалась примерно 5000-8000 лет назад, и за это время туманность покрыла на небе область в 3 градуса. Расстояние до неё оценивается в 1400 световых лет. Эта туманность была открыта 5 сентября 1784 года Уильямом Гершелем.

Одна из нескольких «пылевых колонн» туманности Орёл, в которой может угадываться изображение мифического существа. Имеет размер около десяти световых лет.

Туманность Орёл (также известная как Объект Мессье 16, M16 или NGC 6611) — молодое рассеянное звёздное скопление в созвездии Змеи.

Колонны пыли, в которых формируются новые звезды в туманности Орел. Снимок получен с помощью телескопа Хаббл.

NGC 281 (другие обозначения — IC 11, LBN 616) — эмиссионная туманность в созвездии Кассиопея. Является областью ионизированного водорода, где происходят процессы активного звездообразования. Находится на расстоянии около 10 тыс. Световых лет от Земли. За форму туманность получила название Туманность Пакман (Pac-Man) в честь персонажа одноимённой аркадной компьютерной игры.Туманность флюоресцирует красным светом под действием ультрафиолетового облучения, источником которого являются горячие молодые звёзды рассеянного скопления IC 1590. В туманности присутствуют также тёмные пылевые структуры.

Вы видите известные очертания в неизвестном месте! Эта эмиссионная туманность широко известна, поскольку она похожа на один из континентов планеты Земля - Северную Америку. Справа от туманности Северная Америка, которая также обозначается NGC 7000, находится менее яркая туманность Пеликан. Эти две туманности составляют в поперечнике примерно 50 световых лет и находятся от нас на расстоянии 1500 световых лет. Они разделены темным поглощающим облаком.

Туманность Ориона (также известная как Мессье 42, М42 или NGC 1976) является светящейся эмиссионной туманностью с зеленоватым оттенком и находится ниже Пояса Ориона. Это самая яркая диффузная туманность. «Большая Туманность Ориона» наряду с «Туманностью Андромеды», Плеядами и «Магеллановыми Облаками» входит в число известнейших объектов дальнего космоса. Это, пожалуй, самый притягательный для любителей астрономии зимний объект северного неба. Немногие астрономические виды так возбуждают воображение, как эти близкие звездные ясли, известные как Туманность Ориона. Светящийся газ туманности окружает горячие молодые звезды на краю огромного межзвездного молекулярного облака на расстоянии всего 1500 световых лет.

Туманность Гантель (также известная как Объект Мессье 27, М27, или NGC 6853) является планетарной туманностью в созвездии Лисички, находится на расстоянии 1250 световых лет от Земли. Ее возраст оценивается от 3000 до 4000 лет. Эта планетарная туманность один из самых замечательных объектов для любительских наблюдений. М27 — крупная, относительно яркая и при этом легко находится.Эта фотография получена на компьютере методом narrow-band imaging, когда совмещаются снимки, сделанные телескопами в разных волновых диапазонах: видимом, инфракрасном, ультра-фиолетовом и т.д.

Туманность Эскимос была открыта астрономом Уильямом Гершелем в 1787 году. Если на туманность NGC 2392 смотреть с поверхности Земли, то она похожа на голову человека как будто бы в капюшоне. Если смотреть на туманность из космоса, как это сделал космический телескоп им. Хаббла в 2000 году, после обновления, то она представляет собой газовое облако сложнейшей внутренней структуры, над строением котором ученые ломают головы до сих пор. Туманность Эскимос относится к классу планетарных туманностей, т.е. представляет собой оболочки, которые 10 тысяч лет назад были внешними слоями звезды типа Солнца. Внутренние оболочки, которые видны на картинке сегодня, были выдуты мощным ветром от звезды, находящейся в центре туманности. "Капюшон" состоит из множества относительно плотных газовых волокон, которые, как это запечатлено на картинке, светятся в линии азота оранжевым светом. Туманность Эскимос находится на расстоянии 5 тысяч световых лет от нас, и ее можно обнаружить в небольшой телескоп в направлении на созвездие созвездие Близнецов.

На фоне россыпи звезд в центральной части Млечного Пути и в известном созвездии Змееносца извиваются темные туманности. S-образная темная деталь в центре этого снимка с широким полем имеет название Туманность Змея.

Туманность Карина, находится в южном созвездии Киль на расстоянии от нас 6500-10000 св. лет. Это одна из самых ярких и крупных диффузных туманностей на небе. В ней много массивных звезд и идет активное звездообразование. Эта туманность содержит необычно высокую концентрацию молодых массивных звезд - результат взрывного звездообразования произошедшего приблизительно 3 миллиона лет назад. Туманность содержит более десятка крупных звезд, масса которых в 50-100 раз превышает массу нашего Солнца. Самая яркая из них - Карина - в ближайшем будущем должна закончить свое существование взрывом сверхновой.

Выдутое ветром массивной звезды, это межзвездное видение имеет удивительно знакомую форму. Занесенное в каталог как NGC 7635, оно больше известно просто как туманность Пузырь. Хотя этот пузырь диаметром в 10 световых лет и выглядит изящным, он свидетельствует о действии весьма бурных процессов. Выше и правее центра пузыря находится яркая, горячая звезда Вольфа-Райе, масса которой от 10 до 20 раз больше массы Солнца. Сильный звездный ветер и мощное излучение звезды сформировали эту структуру из светящегося газа в окружающем молекулярном облаке. Привлекающая внимание туманность Пузырь находится на расстоянии всего в 11 тысяч световых лет в созвездии Кассиопеи.

На снимках: район скопления "Трапеция" в туманности Ориона, названного по четырем ярчайшим звездам, образующим нечто близкое к трапеции. Левый снимок сделан в видимом свете, правый - в инфракрасном. На левом снимке видны только обычные звезды, не закрытые пылевыми облаками. На правом добавляются звезды, находящиеся внутри газовых пылевых облаков, и около 50 слабых объектов, называемых "бурыми карликами".

По материалам Астронета, Википедии и Духовно-философского форума А108.

Некоторые примеры такого использования сохранились до сих пор. Например, Галактику Андромеды часто называют «Туманностью Андромеды».

По мере развития астрономии и разрешающей способности телескопов , понятие «туманность» всё более уточнялось: часть «туманностей» была идентифицирована как звёздные скопления, были обнаружены тёмные (поглощающие) газопылевые туманности и, наконец, в 1920-х годах , сначала Лундмарку , а затем и Хабблу , удалось разрешить на звёзды периферийные области ряда галактик и тем самым установить их природу. С этого времени термин «туманность» употребляется в приведённом выше смысле.

Типы туманностей

Первичный признак, используемый при классификации туманностей - поглощение или излучение (рассеивание) ими света , то есть по этому критерию туманности делятся на тёмные и светлые. Первые наблюдаются благодаря поглощению излучения расположенных за ними источников, вторые - благодаря собственному излучению или отражению (рассеиванию) света расположенных рядом звёзд. Природа излучения светлых туманностей, источники энергии, возбуждающие их излучение, зависят от их происхождения и могут иметь разнообразную природу; нередко в одной туманности действуют несколько механизмов излучения.

Деление туманностей на газовые и пылевые в значительной степени условно: все туманности содержат и пыль, и газ. Такое деление исторически обусловлено различными способами наблюдения и механизмами излучения: наличие пыли наиболее ярко наблюдается при поглощении излучения тёмными туманностями расположенных за ними источников и при отражении или рассеивании, или переизлучении пылью, содержащейся в туманности излучения расположенных поблизости или в самой туманности звёзд ; собственное излучение газовой компоненты туманности наблюдается при её ионизации ультрафиолетовым излучением расположенной в туманности горячей звезды (эмиссионные области H II ионизированного водорода вокруг звёздных ассоциаций или планетарные туманности) или при нагреве межзвёздной среды ударной волной вследствие взрыва сверхновой или воздействия мощного звёздного ветра звёзд типа Вольфа - Райе .

Тёмные туманности

Тёмные туманности представляют собой плотные (обычно молекулярные) облака межзвёздного газа и межзвёздной пыли, непрозрачные из-за межзвёздного поглощения света пылью. Обычно они видны на фоне светлых туманностей. Реже тёмные туманности видны прямо на фоне Млечного Пути . Таковы туманность Угольный Мешок и множество более мелких, называемых гигантскими глобулами .

Межзвёздное поглощение света A v в тёмных туманностях колеблется в широких пределах, от 1-10 m до 10-100 m в наиболее плотных. Строение туманностей с большими A v поддаётся изучению только методами радиоастрономии и субмиллиметровой астрономии, в основном по наблюдениям молекулярных радиолиний и по инфракрасному излучению пыли. Часто внутри тёмных туманностей обнаруживаются отдельные уплотнения с A v до 10 000 m в которых, по-видимому, формируются звёзды .

В тех частях туманностей, которые полупрозрачны в оптическом диапазоне, хорошо заметна волокнистая структура. Волокна и общая вытянутость туманностей связаны с наличием в них магнитных полей , затрудняющих движение вещества поперёк силовых линий и приводящих к развитию ряда видов магнитогидродинамических неустойчивостей. Пылевой компонент вещества туманностей связан с магнитными полями из-за того, что пылинки электрически заряжены.

Отражательные туманности

Отражательные туманности являются газово-пылевыми облаками, подсвечиваемыми звёздами . Если звезда (звёзды) находятся в межзвёздном облаке или рядом с ним, но недостаточно горяча (горячи), чтобы ионизовать вокруг себя значительное количество межзвёздного водорода , то основным источником оптического излучения туманности оказывается свет звёзд, рассеиваемый межзвёздной пылью . Примером таких туманностей являются туманности вокруг ярких звёзд в скоплении Плеяды .

Большинство отражательных туманностей расположено вблизи плоскости Млечного Пути . В ряде случаев наблюдаются отражательные туманности на высоких галактических широтах. Это газово-пылевые (часто молекулярные) облака различных размеров, формы, плотности и массы, подсвечиваемые совокупным излучением звёзд диска Млечного Пути. Они трудны для изучения из-за очень низкой поверхностной яркости (обычно много слабее фона неба). Иногда, проецируясь на изображениях галактик , они приводят к появлению на фотографиях галактик несуществующих в действительности деталей - хвостов, перемычек и т. п.

Отражательная туманность «Ангел» находится на высоте 300 пк над плоскостью галактики

Некоторые отражательные туманности имеют кометообразный вид и называются кометарными. В «голове» такой туманности находится обычно переменная звезда типа T Тельца , освещающая туманность. Такие туманности нередко имеют переменную яркость, отслеживая (с запаздыванием на время распространения света) переменность излучения освещающих их звёзд. Размеры кометарных туманностей обычно малы - сотые доли парсека .

Редкой разновидностью отражательной туманности является так называемое световое эхо , наблюдавшееся после вспышки новой звезды 1901 года в созвездии Персея . Яркая вспышка новой звезды подсветила пыль, и несколько лет наблюдалась слабая туманность, распространявшаяся во все стороны со скоростью света. Кроме светового эха после вспышек новых звёзд образуются газовые туманности, подобные остаткам вспышек сверхновых звёзд .

Многие отражательные туманности имеют тонковолокнистую структуру - систему почти параллельных волокон толщиной в несколько сотых или тысячных долей парсека . Происхождение волокон связано с желобковой или перестановочной неустойчивостью в туманности, пронизанной магнитным полем . Волокна газа и пыли раздвигают силовые линии магнитного поля и внедряются между ними, образуя тонкие нити.

Изучение распределения яркости и поляризации света по поверхности отражательных туманностей, а также измерение зависимости этих параметров от длины волны позволяют установить такие свойства межзвёздной пыли, как альбедо , индикатрису рассеяния, размер, форму и ориентацию пылинок.

Туманности, ионизованные излучением

Туманности, ионизованные излучением, - участки межзвёздного газа , сильно ионизованного излучением звёзд или других источников ионизующего излучения. Самыми яркими и распространёнными, а также наиболее изученными представителями таких туманностей являются области ионизованного водорода (зоны H II). В зонах H II вещество практически полностью ионизовано и нагрето до температуры ~10 4 К ультрафиолетовым излучением находящихся внутри них звёзд. Внутри зон HII всё излучение звезды в лаймановском континууме перерабатывается в излучение в линиях субординатных серий , в соответствии с теоремой Росселанда . Поэтому в спектре диффузных туманностей очень яркие линии Бальмеровской серии , а также линия Лайман-альфа. Лишь разреженные зоны H II низкой плотности ионизованы излучением звёзд, в т. н. корональном газе.

К туманностям, ионизованным излучением относятся также так называемые зоны ионизованного углерода (зоны C II), в которых углерод практически полностью ионизован светом центральных звёзд. Зоны C II обычно расположены вокруг зон H II в областях нейтрального водорода (H I) и проявляют себя по рекомбинационным радиолиниям углерода, аналогичным рекомбинационным радиолиниям водорода и гелия . Зоны C II наблюдаются также в инфракрасной линии C II (λ = 156 мкм). Для зон C II характерны низкая температура 30-100 К и малая степень ионизации среды в целом: N e /N < 10 −3 , где N e и N концентрации электронов и атомов. Зоны C II возникают из-за того, что потенциал ионизации углерода (11,8 эВ) меньше, чем у водорода (13,6 эВ). Излучение звёзд с энергией E фотонов 11,8 эВ E 13,6 эВ (Å) выходит за пределы зоны H II в область H I, сжатую ионизационным фронтом зоны H II, и ионизует там углерод. Зоны C II возникают также вокруг звёзд спектральных классов B1-B5, находящихся в плотных участках межзвёздной среды. Такие звёзды практически не способны ионизовать водород и не создают заметных зон H II.

Туманности, ионизованные излучением, возникают также вокруг мощных рентгеновских источников в Млечном Пути и в других галактиках (в том числе в активных ядрах галактик и квазарах). Для них часто характерны более высокие температуры, чем в зонах H II, и более высокая степень ионизации тяжёлых элементов.

Планетарные туманности

Разновидностью эмиссионных туманностей являются планетарные туманности, образованные верхними истекающими слоями атмосфер звёзд ; обычно это оболочка, сброшенная звездой-гигантом. Туманность расширяется и светится в оптическом диапазоне. Первые планетарные туманности были открыты У. Гершелем около 1783 года и названы так за их внешнее сходство с дисками планет . Однако далеко не все планетарные туманности имеют форму диска: многие имеют форму кольца или симметрично вытянуты вдоль некоторого направления (биполярные туманности). Внутри них заметна тонкая структура в виде струй, спиралей, мелких глобул. Скорость расширения планетарных туманностей 20-40 км/с, диаметр 0,01-0,1 пк, типичная масса около 0,1 массы Солнца, время жизни около 10 тыс. лет.

Туманности, созданные ударными волнами

Разнообразие и многочисленность источников сверхзвукового движения вещества в межзвёздной среде приводят к большому количеству и разнообразию туманностей, созданных ударными волнами . Обычно такие туманности недолговечны, так как исчезают после исчерпания кинетической энергии движущегося газа.

Основными источниками сильных ударных волн в межзвёздной среде являются взрывы звёзд - сбросы оболочек при вспышках сверхновых и новых звёзд , а также звёздный ветер (в результате действия последнего образуются т. н. пузыри звёздного ветра). Во всех этих случаях имеется точечный источник выброса вещества (звезда). Созданные таким образом туманности имеют вид расширяющейся оболочки, по форме близкой к сферической.

Выбрасываемое вещество имеет скорости порядка сотен и тысяч км/с, поэтому температура газа за фронтом ударной волны может достигать многих миллионов и даже миллиардов градусов.

Газ, нагретый до температуры несколько миллионов градусов, излучает главным образом в рентгеновском диапазоне как в непрерывном спектре, так и в спектральных линиях. В оптических спектральных линиях он светится очень слабо. Когда ударная волна встречает неоднородности межзвёздной среды, она огибает уплотнения. Внутри уплотнений распространяется более медленная ударная волна, вызывающая излучение в спектральных линиях оптического диапазона. В результате возникают яркие волокна, хорошо заметные на фотографиях. Основной ударный фронт, обжимая сгусток межзвёздного газа, приводит его в движение в сторону своего распространения, но с меньшей, чем у ударной волны, скоростью.

Остатки сверхновых и новых звёзд

Наиболее яркие туманности, созданные ударными волнами, вызваны взрывами сверхновых звёзд и называются остатками вспышек сверхновых звёзд. Они играют очень важную роль в формировании структуры межзвёздного газа. Наряду с описанными особенностями для них характерно нетепловое радиоизлучение со степенным спектром, вызванное релятивистскими электронами, ускоряемыми как в процессе взрыва сверхновой, так и позже пульсаром, обычно остающимся после взрыва. Туманности, связанные со взрывами новых звёзд , малы, слабы и недолговечны.

Туманности вокруг звёзд Вольфа - Райе

Шлем Тора - туманность вокруг звезды Вольфа - Райе

Другой тип туманностей, созданных ударными волнами связан со звёздным ветром от звёзд Вольфа - Райе . Эти звёзды характеризуются очень мощным звёздным ветром с потоком массы в год и скоростью истечения 1·10 3 -3·10 3 км/с. Они создают туманности размером в несколько парсек с яркими волокнами на границе астросферы такой звёзды. В отличие от остатков вспышек сверхновых звёзд радиоизлучение этих туманностей имеет тепловую природу. Время жизни таких туманностей ограничено продолжительностью пребывания звёзд в стадии звезды Вольфа - Райе и близко к 10 5 лет.

Туманности вокруг O-звёзд

Аналогичны по свойствам туманностям вокруг звёзд Вольфа - Райе , но образуются вокруг наиболее ярких горячих звёзд спектрального класса О - Of, обладающих сильным звёздным ветром . От туманностей, связанных со звёздами Вольфа - Райе, они отличаются меньшей яркостью, бо́льшими размерами и, видимо, большей продолжительностью жизни.

Туманности в областях звездообразования

Туманность Орион А - гигантская область звездообразования

Ударные волны меньших скоростей возникают в областях межзвёздной среды , в которых происходит звездообразование. Они приводят к нагреву газа до сотен и тысяч градусов, возбуждению молекулярных уровней, частичному разрушению молекул, нагреву пыли. Такие ударные волны видны в виде вытянутых туманностей светящихся преимущественно в инфракрасном диапазоне. Ряд таких туманностей обнаружен, например, в очаге звездообразования, связанном с туманностью Ориона.