Теория химического строения органических соединений. Классификация органических веществ. Все про органические вещества

16.10.2019

Эти термины родились свыше четырёхсот лет назад. Тогдашние химики были уверены, что живые и неживые организмы состоят из разного набора веществ: первые – из органических, вторые из неорганических («минеральных»). Позднее стало ясно, что между живым и неживым нет непроходимой пропасти. Тем не менее, традиционное деление веществ на две большие группы осталось, хотя и потеряло прежний смысл.

Теперь органические вещества чаще всего определяют так: соединения, в состав которых входит углерод. Все прочие «по умолчанию» относят к неорганическим (минеральным). Чёткой грани между двумя группами не провести, потому что хватает исключений. Мы о них скажем ниже.

Кроме того, далеко не все вещества, именуемые органическими, входят в тела живых организмов. С другой стороны, в их составе всегда есть неорганика – вода, минеральные соли. Всё это может сбивать с толку несведущих в химии.

В общем, неудивительно, что Международный союз чистой и прикладной химии (ИЮПАК) не предлагает официального определения неорганических или органических соединений.

А споры продолжаются

Многие вещества, в которых входит углерод, химики традиционно отказываются считать органическими или спорят, куда их относить. Это угольная (карбонатная) и цианидная (синильная) кислоты и их соли, простые оксиды углерода (в том числе, всем известный углекислый газ), соединения углерода с серой, кремнием, карбиды и другие. А ведь есть ещё простые вещества, состоящие только из углерода – древесный и ископаемый уголь, кокс, сажа, графит и ещё пара десятков веществ.


Но, в общем, сложившееся деление на «органику» и «неорганику» сохраняется. Хотя бы потому, что, несомненно, помогает ориентироваться в мире веществ и осваиваться в нём новичкам.

Почему углерод?

Действительно, отчего из более, чем сотни химических элементов, только углерод оказался способным образовать миллионы веществ? Основных причин две: атомы углерода способны соединяться со атомами множества других элементов (водорода, кислорода, серы, фосфора и многих других) и друг с другом. В последнем случае образуются цепочки какой угодно длины и самой разнообразной конструкции – линейные, разветвлённые, замкнутые.

В результате число природных и синтезированных органических веществ исчисляется примерно 27 миллионами, а неорганических приближается всего лишь к полумиллиону. Как говорится, почувствуйте разницу.

Во всём нужен порядок

Неорганические вещества обычно подразделяют на простые и сложные. Первые состоят из одинаковых атомов. Атомы разных элементов образуют сложные вещества: оксиды, гидроксиды, кислоты, соли. Возможны и другие подходы. Например, классифицировать на основе одного из элементов: соединения железа, соединения хлора.

У органических веществ классов побольше. По составу и строению их обычно подразделяют на белки, аминокислоты, липиды, жирные кислоты, углеводы, нуклеиновые кислоты. На базе их биологического действия органические соединения можно группировать в алкалоиды, ферменты, витамины, гормоны, нейромедиаторы и др.

Классификация предполагает и «называние». Само собой, разные соединения должны всегда носить разные имена и при этом желательно, чтобы по имени можно было судить о самом веществе. Но когда речь идёт о миллионах разных названий… Как вам такое: (6E,13E)-18-бромо-12-бутил-11-хлоро-4,8-диэтил-5-гидрокси-15-метокситрикоза-6,13-диен-19-ин-3,9-дион? Оно составлено по всем официальным правилам органической химии.


Ясно, что самые длинные слова надо искать именно в мире органики. В русском языке рекордсменом считают словечко «тетрагидропиранилциклопентилтетрагидропиридопиридиновое» (55 букв!). Но это далеко не предел. В наших мышцах есть белок титин, полное химическое название которого в английском варианте состоит из 189 819 букв и произносится примерно три с половиной часа. Надеемся, вы не обидитесь, если мы публиковать его здесь не будем.

Как известно, все вещества могут быть поделены на две большие категории - минеральные и органические. Можно привести большое количество примеров неорганических, или минеральных, веществ: соль, сода, калий. Но какие типы соединений попадают во вторую категорию? Органические вещества представлены в любом живом организме.

Белки

Важнейшим примером органических веществ являются белки. В их состав входит азот, водород и кислород. Помимо них, иногда в некоторых белках также можно обнаружить атомы серы.

Белки являются одними из важнейших органических соединений, и они наиболее часто встречаются в природе. В отличие от других соединений, белкам свойственны некоторые характерные черты. Главное их свойство - это огромная молекулярная масса. Например, молекулярный вес атома спирта составляет 46, бензола - 78, а гемоглобина - 152 000. По сравнению с молекулами других веществ, белки являются настоящими великанами, содержащими в себе тысячи атомов. Иногда биологи называют их макромолекулами.

Белки являются самыми сложными из всех органических строений. Они относятся к классу полимеров. Если рассмотреть молекулу полимера под микроскопом, то можно увидеть, что она представляет собой цепь, состоящую из более простых структур. Они носят название мономеров и повторяются в полимерах множество раз.

Помимо белков существует большое количество полимеров - каучук, целлюлоза, а также обычный крахмал. Также немало полимеров создано и руками человека - капрон, лавсан, полиэтилен.

Образование белка

Как же образуются белки? Они представляют собой пример органических веществ, состав которых в живых организмах определяется генетическим кодом. При их синтезе в подавляющем большинстве случаев используются различные комбинации

Также новые аминокислоты могут образовываться уже когда белок начинает функционировать в клетке. При этом в нем встречаются только альфа-аминокислоты. Первичная структура описываемого вещества определяется последовательностью остатков аминокислотных соединений. И в большинстве случаев полипептидная цепь при образовании белка закручивается в спираль, витки которой располагаются тесно друг к другу. В результате образования водородных соединений она имеет достаточно прочную структуру.

Жиры

Другим примером органических веществ могут послужить жиры. Человеку известно немало видов жиров: сливочное масло, говяжий и рыбий жир, растительные масла. В больших количествах жиры образуются в семенах растений. Если очищенную семечку подсолнечника положить на лист бумаги и придавить, то на листе останется маслянистое пятно.

Углеводы

Не менее важными в живой природе являются углеводы. Они содержатся во всех органах растений. К классу углеводов относится сахар, крахмал, а также клетчатка. Богаты ими клубни картофеля, плоды банана. Очень легко обнаружить крахмал в картофеле. При реакции с йодом этот углевод окрашивается в синий цвет. В этом можно убедиться, если капнуть на срез картофелины немного йода.

Также несложно обнаружить и сахара - они все имеют сладкий вкус. Много углеводов этого класса содержится в плодах винограда, арбузов, дыни, яблони. Они представляют собой примеры органических веществ, которые также производятся в искусственных условиях. Например, из сахарного тростника добывается сахар.

А как образуются углеводы в природе? Самым простым примером является процесс фотосинтеза. Углеводы представляют собой органические вещества, в которых содержится цепь из нескольких углеродных атомов. Также в их состав входит несколько гидроксильных групп. В процессе фотосинтеза сахар неорганических веществ образуется из оксида углерода и серы.

Клетчатка

Еще одним примером органических веществ является клетчатка. Больше всего ее содержится в семенах хлопка, а также стеблях растений и их листьях. Клетчатка состоит их линейных полимеров, ее молекулярная масса составляет от 500 тысяч до 2 млн.

В чистом виде она представляет собой вещество, у которого отсутствует запах, вкус и цвет. Применяется оно при изготовлении фотопленки, целлофана, взрывчатки. В организме человека клетчатка не усваивается, однако является необходимой частью рациона, поскольку стимулирует работу желудка и кишечника.

Вещества органические и неорганические

Можно привести немало примеров образования органических и Вторые всегда происходят из минералов - неживых которые образуются в глубинах земли. Они входят и в состав различных горных пород.

В естественных условиях неорганические вещества образуются в процессе разрушения минералов либо органических веществ. С другой стороны, из минералов постоянно образуются вещества органические. Например, растения поглощают воду с растворенными в ней соединениями, которые в дальнейшем переходят из одной категории в другую. Живые организмы используют для питания главным образом органические вещества.

Причины разнообразия

Нередко школьникам или студентам нужно ответить на вопрос о том, в чем заключаются причины многообразия органических веществ. Главный фактор состоит в том, что атомы углерода соединяются между собой при помощи двух типов связей - простых и кратных. Также они могут образовывать цепи. Еще одной причиной является разнообразие различных химических элементов, которые входят в органические вещества. Кроме того, многообразие обусловлено и аллотропией - явлением существования одного и того же элемента в различных соединениях.

А как образуются неорганические вещества? Природные и синтетические органические вещества и их примеры изучаются как в старших классах школы, так и в профилированных высших учебных заведениях. Образование неорганических веществ - это не такой сложный процесс, как образование белков или углеводов. Например, соду с незапамятных времен люди добывали из содовых озер. В 1791 году ученый-химик Николя Леблан предложил синтезировать ее в лабораторных условиях с использованием мела, соли, а также серной кислоты. Когда-то всем привычная сегодня сода была достаточно недешевым продуктом. Для проведения опыта было необходимо прокалить поваренную соль вместе с кислотой, а затем образовавшийся сульфат прокалить вместе с известняком и древесным углем.

Другим является марганцовка, или перманганат калия. Это вещество получают в промышленных условиях. Процесс образования заключается в электролизе раствора гидроксида калия и марганцевого анода. При этом анод постепенно растворяется с образованием раствора фиолетового цвета - это и есть всем известная марганцовка.

Органических соединений много, но среди них имеются соединения с общими и сходными свойствами. Поэтому все они по общим признакам классифицированы, объединены в отдельные классы и группы. В основе классификации лежат углеводороды соединения, которые состоят только из атомов углерода и водорода. Остальные органические вещества относятся к «Другим классам органических соединений».

Углеводороды делятся на два больших класса: ациклические и циклические соединения.

Ациклические соединения (жирные или алифатические) соединения, молекулы которых содержат открытую (незамкнутую в кольцо) неразветвленную или разветвленную углеродную цепь с простыми или кратными связями. Ациклические соединения подразделяются на две основные группы:

насыщенные (предельные) углеводороды (алканы), у которых все атомы углерода связаны между собой только простыми связями;

ненасыщенные (непредельные) углеводороды, у которых между атомами углерода кроме одинарных простых связей, имеются также и двойные, и тройные связи.

Ненасыщенные (непредельные) углеводороды делятся на три группы: алкены, алкины и алкадиены.

Алкены (олефины, этиленовые углеводороды) ациклические непредельные углеводороды, которые содержат одну двойную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ен». Например, пропен, бутен, изобутилен или метилпропен.

Алкины (ацетиленовые углеводороды) углеводороды, которые содержат тройную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n-2 . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ин». Например, этин (ацителен), бутин, пептин.

Алкадиены органические соединения, которые содержат две двойные связи углерод-углерод. В зависимости от того, как располагаются двойные связи относительно друг друга диены делятся на три группы: сопряженные диены, аллены и диены с изолированными двойными связями. Обычно к диенам относят ациклические и циклические 1,3-диены, образующие с общими формулами C n H 2n-2 и C n H 2n-4 . Ациклические диены являются структурными изомерами алкинов.

Циклические соединения в свою очередь делятся на две большие группы:

  1. карбоциклические соединения соединения, циклы которых состоят только из атомов углерода; Карбоциклические соединения подразделяются на алициклические насыщенные (циклопарафины) и ароматические;
  2. гетероциклические соединения соединения, циклы которых состоят не только из атомов углерода, но атомов других элементов: азота, кислорода, серы и др.

В молекулах как ациклических, так и циклических соединений атомы водорода можно замещать на другие атомы или группы атомов, таким образом, с помощью введения функциональных групп можно получать производные углеводородов. Это свойство ещё больше расширяет возможности получения различных органических соединений и объясняет их многообразие.

Наличие тех или иных групп в молекулах органических соединений обуславливает общность их свойств. На этом основана классификация производных углеводородов.

К «Другим классам органических соединений» относятся следующие:

Спирты получаются замещением одного или нескольких атомов водорода гидроксильными группами OH. Это соединение с общей формулой R (OH) х, где х число гидроксильных групп.

Альдегиды содержат альдегидную группу (С = О), которая всегда находится в конце углеводородной цепи.

Карбоновые кислоты содержат в своём составе одну или несколько карбоксильных групп COOH.

Сложные эфиры производные кислородосодержащих кислот, которые формально являются продуктами замещения атомов водорода гидроокислов OH кислотной функции на углеводородный остаток; рассматриваются также как ацилпроизводные спиртов.

Жиры (триглицериды) природные органические соединения, полные сложные эфиры глицерина и односоставных жирных кислот; входят в класс липидов. Природные жиры содержат в своём составе три кислотных радикала с неразветвлённой структурой и, обычно, чётное число атомов углерода.

Углеводы органические вещества, которые содержат содержащими неразветвленную цепь из нескольких атомов углерода, карбоксильную группу и несколько гидроксильных групп.

Амины содержат в своём составе аминогруппу NH 2

Аминокислоты органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Белки высокомолекулярные органические вещества, которые состоят состоящие из альфа – аминокислот, соединённых в цепочку пептидной связью.

Нуклеиновые кислоты высокомолекулярные органические соединения, биополимеры, образованные остатками нуклеотидов.

Остались вопросы? Хотите знать больше о классификации органических соединений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Изначально называлась химия веществ, полученных из организмов растений и животных. С такими веществами человечество знакомо с глубокой древности. Люди умели получать уксус из прокисшего вина, а эфирные масла из растений, выделять сахар из сахарного тростника, извлекать природные красители из организмов растений и животных.

Химики разделяли все вещества в зависимости от источника их получения на минеральные (неорганические), животные и растительные (органические).

Долгое время считалось, что для получения органических веществ нужна особая «жизненная сила» - vis Vitalis, которая действует только в живых организмах, а химики способны всего лишь выделять органические вещества из продуктов.

Шведский химик, президент Королевской шведской Академии наук. Научные исследования охватывают все главные проблемы общей химии первой половины XIX в. Экспериментально проверил и доказал достоверность законов постоянства состава и кратных отношений применительно к неорганическим оксидам и органическим соединениям. Определил атомную массу 45 химического элемента. Ввел современные обозначения химических элементов и первые формулы химических соединений.

Шведский химик Й. Я. Берцелиус определил органическую химию как химию растительных или животных веществ, образующихся под влиянием «жизненной силы». Именно Берцелиус ввел понятия органические вещества и органическая химия.

Развитие химии привело к накоплению большого количества фактов и к краху учения о «жизненной силе» - витализма. Немецкий ученый Ф. Вёлер в 1824 г. осуществил первый синтез органических веществ - получил щавелевую кислоту путем взаимодействия двух неорганических веществ - дициана и воды:

N=- C-С=N + 4Н 2 0 -> СООН + 2NН 3
СООН
дициан щавелевая кислота

А в 1828 г. Вёлер, нагревая водный раствор неорганического вещества цианата аммония, получил мочевину - продукт жизнедеятельности животных организмов:


Изумленный таким результатом, Вёлер написал Берцелиусу: «Должен сказать Вам, что я умею приготовить мочевину, не нуждаясь ни в почке, ни в животном организме вообще...»

Вёлер Фридрих (1800--1882}

Немецкий химик. Иностранный член Петербургской Академии наук (с 1853 г.). Его исследования посвящены как неорганической, так и органической химии. Открыл циановую кислоту (1822), получил алюминий (1827), бериллий и иттрий (1828).

В последующие годы блестяшие синтезы анилина Г. Кольбе и Э. Франклендом (1842), жира М. Бер^о (1854), сахаристых веществ А. Бутлеровым (1861) и др. окончательно похоронили миф о «жизненной силе».

Появилось классическое определение К. Шорлеммера, не потерявшее своего значения и более 120 лет спустя:

«Органическая химия есть химия углеводородов и их производных, т. е. продуктов, образующихся при замене водорода другими атомами или группами атомов».

Сейчас органическую химию чаще всего называют химией соединений углерода. Почему же из более чем ста элементов Периодической системы Д. И. Менделеева природа именно углерод положила в основу всего живого? Ответ на этот вопрос неоднозначен. Многое вам станет понятно, когда вы рассмотрите строение атома углерода и поймете слова Д. И. Менделеева, сказанные им в «Основах химии» об этом замечательном элементе: «Углерод встречается в природе как в свободном, так и в соединительном состоянии, в весьма различных формах и видах... Способность атомов углерода соединяться между собой и давать сложные частицы проявляется во всех углеродистых соединениях... Ни в одном из элементов... способности к усложнению не развито в такой степени, как в углероде... Ни одна пара элементов не дает столь много соединений, как углерод с водородом».

Многочисленные связи атомов углерода между собой и с атомами других элементов (водорода, кислорода, азота, серы, фосфора), входящих в состав органических веществ, могут разрушаться под влиянием природных факторов. Поэтому углерод совершает непрерывный круговорот в природе: из атмосферы (углекислый газ) - в растения (фотосинтез), из растений - в животные организмы, из живого - в мертвое, из мертвого - в живое... (рис. 1).

Органические вещества имеют ряд особенностей, которые отличают их от неорганических веществ:

1. Неорганических веществ насчитывается немногим более 100 тыс., тогда как органических - почти 18 млн (табл. 1).


Рис. 1. Круговорот углерода в природе

2. В состав всех органических веществ входят углерод и водород, поэтому большинство из них горючи и при горении обязательно образуют углекислый газ и воду.

3. Органические вещества построены более сложно, чем неорганические, и многие из них имеют огромную молекулярную массу, например те, благодаря которым происходят жизненные процессы: белки, жиры, углеводы, нуклеиновые кислоты и т. д.

4. Органические вещества можно расположить в ряды сходных по составу, строению и свойствам - гомологов.

Гомологическим рядом называется ряд веществ, расположенных в порядке возрастания их относительных молекулярных масс, сходных по строению и химическим свойствам, где каждый член отличается от предыдущего на гомологическую разность СН 2 .

Таблица 1. Рост числа известных органических соединений

5. Для органических веществ характерной является изомерия, очень редко встречающаяся среди неорганических веществ. Вспомните примеры изомеров, с которыми вы знакомились в 9 классе. В чем причина различий в свойствах изомеров?

Изомерия - это явление существования разных веществ - изомеров с одинаковым качественным и количественным составом, т. е. одинаковой молекулярной формулой.

Величайшим обобщением знаний о неорганических веществах является Периодический закон и Периодическая система элементов Д. И. Менделеева. Для органических веществ аналогом такого обобщения служит теория строения органических соединений А. М. Бутлерова . Вспомните, что Бутлеров понимал под химическим строением. Сформулируйте основные положения этой теории.

Для количественной характеристики способности атомов одного химического элемента соединяться с определенным числом атомов другого химического элемента в неорганической химии, где большинство веществ имеет немолекулярное строение, применяют понятие «степень окисления>>. В органической химии, где большинство соединений имеет молекулярное строение, используют понятие «валентность». Вспомните, что означают эти понятия, сравните их.

Велико значение органической химии в нашей жизни. В любом организме в любой момент протекает множество превращений одних органических веществ в другие. Поэтому без знаний органической химии невозможно понять, как осуществляется функционирование систем, образующих живой организм, т. е. сложно понимание биологии и медицины.

С помощью органического синтеза получают разнообразные органические вещества: искусственные и синтетические волокна, каучуки, пластмассы, красители, пестициды (что это такое?), синтетические витамины, гормоны, лекарства и т. д.

Многие современные продукты и материалы, без которых мы не можем обходиться, являются органическими веществами (табл. 2).

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Органические соединения классифицируют, учитывая два основных структурных признака:


Строение углеродной цепи(углеродного скелета);


Наличие и строение функциональных групп.


Углеродный скелет (углеродная цепь) - последовательность химически связанных между собой атомов углерода.


Функциональная группа - атом или группа атомов, определяющие принадлежность соединения к определенному классу и ответственные за его химические свойства.

Классификация соединений по строению углеродной цепи

В зависимости от строения углеродной цепи органические соединения делят на ациклические и циклические.


Ациклические соединения - соединения с открытой (незамкнутой) углеродной цепью. Эти соединения называются также алифатическими.


Среди ациклических соединений различают предельные (насыщенные), содержащие в скелете только одинарные связи C-C и непредельные (ненасыщенные),включающие кратные связи C = C и C C.

Ациклические соединения

Предельные:




Непредельные:




Ациклические соединения подразделяют также на соединения с не разветвленной и разветвленной цепью. В этом случае учитывается число связей атома углерода с другими углеродными атомами.



Цепь, в которую входят третичные или четвертичные атомы углерода, является разветвленной (в названии часто обозначается приставкой «изо»).


Например:




Атомы углерода:


Первичный;


Вторичный;


Третичный.


Циклические соединения - соединения с замкнутой углеродной цепью.


В зависимости от природы атомов, составляющих цикл, различают карбоциклические и гетероциклические соединения.


Карбоциклические соединения содержат в цикле только атомы углерода. Они делятся на две существенно различающихся по химическим свойствам группы: алифатические циклические - сокращенно алициклические - и ароматические соединения.

Карбоциклические соединения

Алицеклические:




Ароматические:




Гетероциклические соединения содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов - гетероатомов (от греч. heteros - другой, иной) - кислород, азот, серу и др.

Гетероциклические соединения

Классификация соединений по функциональным группам

Соединения, в состав которых входят только углерод и водород, называются углеводородами.


Другие, более многочисленные, органические соединения можно рассматривать как производные углеводородов, которые образуются при введении в углеводороды функциональных групп, содержащих другие элементы.


В зависимости от природы функциональных групп органические соединения делят на классы. Некоторые наиболее характерные функциональные группы и соответствующие им классы соединений приведены в таблице:

Классы органических соединений



Примечание: к функциональным группам иногда относят двойную и тройную связи.


В состав молекул органических соединений могут входить две или более одинаковых или различных функциональных групп.


Например: HO- CH 2 - CH 2 -OH (этиленгликоль); NH 2 -CH 2 - COOH (аминокислота глицин ).


Все классы органических соединений взаимосвязаны. Переход от одних классов соединений к другим осуществляется в основном за счет превращения функциональных групп без изменения углеродного скелета. Соединения каждого класса составляют гомологический ряд.