Границы применимости уравнения менделеева клапейрона. Идеальный газ. Уравнение состояния идеального газа. Изопроцессы

16.10.2019

Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Менделеева - Клапейрона ) - формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

Так как , где-количество вещества, а , где- масса,-молярная масса, уравнение состояния можно записать:

Эта форма записи носит имя уравнения (закона) Менделеева - Клапейрона.

В случае постоянной массы газа уравнение можно записать в виде:

Последнее уравнение называют объединённым газовым законом . Из него получаются законы Бойля - Мариотта, Шарля и Гей-Люссака:

- закон Бойля - Мариотта .

- Закон Гей-Люссака .

- закон Шарля (второй закон Гей-Люссака, 1808 г.).А в форме пропорции этот закон удобен для расчёта перевода газа из одного состояния в другое. С точки зрения химика этот закон может звучать несколько иначе: Объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как простые целые числа. Например, 1 объёмводородасоединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода:

1 Объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака:

- закон Бойля - Мариотта . Закон Бойля - Мариотта назван в честь ирландского физика, химика и философа Роберта Бойля (1627-1691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (1620-1684), который открыл этот закон независимо от Бойля в 1677 году. В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме

где -показатель адиабаты, - внутренняя энергия единицы массы вещества.Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля - Мариотта. И это обстоятельство может быть прояснено на основании молекулярных представлений.

С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки. С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведениеувеличивается.

5. Основное уравнение молекулярно-кинетической теории идеальных газов

Для вывода основного уравнения молеку­лярно-кинетической теории рассмотрим одноатомный идеальный газ. Предполо­жим, что молекулы газа движутся хаоти­чески, число взаимных столкновений меж­ду молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку DS и вычислим давле­ние, оказываемое на эту площадку. При каждом соударении молекула, движущая­ся перпендикулярно площадке, передает ей импульс m 0 v-(-m 0 v)=2m 0 v, где т 0 - масса молекулы, v - ее скорость.

За время Dt площадки DS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием DS и высотой v Dt .Число этих молекул равно n DSv Dt (n- концентрация молекул).

Необходимо, однако, учитывать, что реально молекулы движутся к площадке

DS под разными углами и имеют различ­ные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движе­ние молекул заменяют движением вдоль трех взаимно перпендикулярных направ­лений, так что в любой момент времени вдоль каждого из них движется 1 / 3 моле­кул, причем половина молекул (1 / 6) дви­жется вдоль данного направления в одну сторону, половина - в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку DS будет 1 / 6 nDSvDt. При столкновении с пло­щадкой эти молекулы передадут ей им­пульс

DР = 2m 0 v 1 / 6 n DSv Dt = 1 / 3 nm 0 v 2 DS Dt .

Тогда давление газа, оказываемое им на стенку сосуда,

p =DP/(DtDS)= 1 / 3 nm 0 v 2 . (3.1)

Если газ в объеме V содержит N молекул,

движущихся со скоростями v 1 , v 2 , ..., v N , то

целесообразно рассматривать среднюю квадратичную скорость

характеризующую всю совокупность моле­кул газа.

Уравнение (3.1) с учетом (3.2) при­мет вид

р = 1 / 3 пт 0 2 . (3.3)

Выражение (3.3) называется основ­ным уравнением молекулярно-кинетической теории идеальных газов. Точный рас­чет с учетом движения молекул по все-

возможным направлениям дает ту же формулу.

Учитывая, что n = N/V, получим

где Е - суммарная кинетическая энергия поступательного движения всех молекул газа.

Так как масса газа m =Nm 0 , то урав­нение (3.4) можно переписать в виде

pV = 1 / 3 m 2 .

Для одного моля газа т = М (М - моляр­ная масса), поэтому

pV m = 1 / 3 M 2 ,

где V m - молярный объем. С другой сто­роны, по уравнению Клапейрона - Мен­делеева, pV m =RT. Таким образом,

RT= 1 / 3 М 2 , откуда

Так как М = m 0 N A , где m 0 -масса од­ной молекулы, а N А - постоянная Авогад­ро, то из уравнения (3.6) следует, что

где k = R/N A -постоянная Больцмана. Отсюда найдем, что при комнатной темпе­ратуре молекулы кислорода имеют сред­нюю квадратичную скорость 480 м/с, во­дорода - 1900 м/с. При температуре жид­кого гелия те же скорости будут соответ­ственно 40 и 160 м/с.

Средняя кинетическая энергия посту­пательного движения одной молекулы иде­ального газа

) 2 /2 = 3 / 2 kT(43.8)

(использовали формулы (3.5) и (3.7)) пропорциональна термодинамической тем­пературе и зависит только от нее. Из этого уравнения следует, что при T=0 =0,т. е. при 0 К прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Таким образом, термодинамическая температура является мерой средней кинетической энергии по­ступательного движения молекул идеаль­ного газа и формула (3.8) раскрывает молекулярно-кинетическое толкование температуры.

КЛАПЕЙРОНА УРАВНЕНИЕ

КЛАПЕЙРОНА УРАВНЕНИЕ

(Клапейрона - Менделеева уравнение), зависимость между параметрами идеального газа (давлением р, объёмом V и абс. темп-рой Т), определяющими его состояние: pV=BT, где коэфф. пропорциональности В зависит от массы газа М и его мол. массы. Установлен франц. учёным Б. П. Э. Клапейроном (В. Р. Е. Clapeyron) в 1834. В 1874 Д. И. Менделеев вывел ур-ние для одного моля идеального газа: pV=RT, где R - универсальная . Если мол. газа m, то

pV=(M/m)RT, или PV=NkT,

где N - число ч-ц газа. К. у. представляет собой идеального газа, к-рое объединяет Бойля - Мариотта закон, Гей-Люссака закон и Авогадро закон.

К. у.- наиболее простое ур-ние состояния, применимое с определ. степенью точности к реальным газам при низких давлениях и высоких темп-pax (напр., к атм. воздуху, продуктам сгорания в газовых двигателях), когда они близки по св-вам к идеальным газам.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

КЛАПЕЙРОНА УРАВНЕНИЕ

(Клапейрона - Менделеева уравнение) - зависимость между параметрами идеального газа (давлением p , объёмом V и абс. темп-рой Т), определяющими его состояние: pV=BT, где коэф. пропорциональности В зависит от массы газа М и его мол. массы. Установлен франц. учёным Б. П. Э. Клапейроном (В. Р. Е. Clapeyron) в 1834. В 1874 Д. И. Менделеев вывел ур-ние состояния для одного моля идеального газа; pV=RT, где R - универсальная газовая постоянная. Если мол. масса газа и, то

где N - число частиц газа. К. у. представляет собой уравнение состояния идеального газа, к-рое объединяет Бойля - Мариотта закон, Гей-Люссака закон и Аво-гадро закон.

К. у.- наиб. простое ур-ние состояния, применимое с определ. степенью точности к реальным газам при низких давлениях и высоких темп-рах.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "КЛАПЕЙРОНА УРАВНЕНИЕ" в других словарях:

    Современная энциклопедия

    Клапейрона уравнение - (Клапейрона Менделеева уравнение), зависимость между давлением p, абсолютной температурой T и объемом V идеального газа массы M: pV=BT, где B=M/m (m масса молекулы газа в атомных единицах массы). Установлена французским ученым Б.П.Э. Клапейроном… … Иллюстрированный энциклопедический словарь

    - (Клапейрона Менделеева уравнение) найденная Б. П. Э. Клапейроном (1834) зависимость между физическими величинами, определяющими состояние идеального газа (давлением p, его объемом V и абсолютной температурой T): pV=BT, где B=M/? (М масса газа, ?… … Большой Энциклопедический словарь

    - (Клапейрона Менделеева уравнение), найденная Б. П. Э. Клапейроном (1834) зависимость между физическими величинами, определяющими состояние идеального газа (давлением р, его объёмом V и абсолютной температурой Т): pV = ВТ, где коэффициент B… … Энциклопедический словарь

    Уравнение состояния Статья является частью серии «Термодинамика». Уравнение состояния идеального газа Уравнение Ван дер Ваальса Уравнение Дитеричи Разделы термодинамики Начала термодинамики Уравнен … Википедия

    Клапейрона Менделеева уравнение, найденная Б. П. Э. Клапейроном (1834) зависимость между физическими величинами, определяющими состояние идеального газа: давлением газа р, его объёмом V и абсолютной температурой Т. К. у.… … Большая советская энциклопедия - Фазовые переходы Статья является частью серии «Термодинамика». Понятие фазы Равновесие фаз Квантовый фазовый переход Разделы термодинамики Начала термодинамики Уравнение состояния … Википедия

    КЛАПЕЙРОНА МЕНДЕЛЕЕВА УРАВНЕНИЕ, уравнение состояния (см. УРАВНЕНИЕ СОСТОЯНИЯ) для идеального газа (см. ИДЕАЛЬНЫЙ ГАЗ), отнесенное к 1 молю (см. МОЛЬ) газа. В 1874 Д. И. Менделеев (см. МЕНДЕЛЕЕВ Дмитрий Иванович) на основе уравнения Клапейрона… … Энциклопедический словарь

Каждый школьник, учащийся в десятом классе, на одном из уроков физики изучает закон Клапейрона-Менделеева, его формулу, формулировку, учится применению при решении задач. В технических университетах эта тема тоже входит в курс лекций и практических работ, причем в нескольких дисциплинах, а не только на физике. Закон Клапейрона-Менделеева активно используется в термодинамике при составлении уравнений состояния идеально газа.

Термодинамика, термодинамические состояния и процессы

Термодинамика представляет собой раздел физики, который посвящен изучению общих свойств тел и тепловых явлений в этих телах без учета их молекулярного строения. Давление, объем и температура являются основными величинами, учитывающимися при описании тепловых процессов в телах. Термодинамическим процессом называется изменение состояния системы, т. е. изменение ее основных величин (давление, объем, температура). В зависимости от того, происходят ли изменения основных величин, системы бывают равновесными и неравновесными. Процессы тепловые (термодинамические) можно так классифицировать. То есть если система переходит из одного равновесного состояния в другое, то такие процессы называются, соответственно, равновесными. Неравновесные процессы, в свою очередь, характеризуются переходами неравновесных состояний, то есть основные величины претерпевают изменения. Однако можно их (процессы) разделить на обратимые (возможен обратный переход через те же состояния) и необратимые. Все состояния системы можно описать определенными уравнениями. Для упрощения расчетов в термодинамике вводится такое понятие, как идеальный газ - некая абстракция, которая характеризуется отсутствием взаимодействия на расстоянии между молекулами, размерами которых можно пренебречь ввиду их малого размера. Основные газовые законы и уравнение Менделеева-Клапейрона тесно взаимосвязаны - все законы вытекают из уравнения. Они описывают изопроцессы в системах, то есть такие процессы, в результате которых один из основных параметров остается неизменным (изохорный процесс - не изменяется объем, изотермический - постоянна температура, изобарный - происходит изменение температуры и объема при постоянстве давления). Закон Клапейрона-Менделеева стоит разобрать подробнее.

Уравнение состояния идеального газа

Закон Клапейрона-Менделеева выражает зависимость между давлением, объемом, температурой, количеством вещества именно идеального газа. Можно так же выразить зависимость только между основными параметрами, то есть абсолютной температурой, молярным объемом и давлением. Суть не изменяется, так как молярный объем равен отношению объема к количеству вещества.

Закон Менделеева-Клапейрона: формула

Уравнение состояния идеального газа записывается в виде произведения давления на молярный объем, приравненного к произведению универсальной газовой постоянной и абсолютной температуры. Универсальная газовая постоянная - коэффициент пропорциональности, константа (неизменная величина), выражающая работу расширения моля в процессе увеличения значения температуры на 1 Кельвин в условиях изобарного процесса. Ее величина составляет (приблизительно) 8,314 Дж/(моль*К). Если выразить молярный объем, то получится уравнение вида: р*V=(m/М)*R*Т. Или можно привести к виду: р=nkT, где n - концентрация атомов, к - постоянная Больцмана (R/NА).

Решение задач

Закон Менделеева-Клапейрона, решение задач с его помощью значительно облегчают расчетную часть при проектировании оборудования. Закон при решении задач применяется в двух случаях: задано одно состояние газа и его масса и при неизвестности величины массы газа известен факт ее изменения. Необходимо учитывать, что в случае многокомпонентных систем (смеси газов) записывается уравнение состояния для каждого компонента, т. е. для каждого газа в отдельности. Для установления связи между давлением смеси и давлениями компонентов используется закон Дальтона. Также стоит помнить, что для каждого состояния газа описывается отдельным уравнением, далее решается уже полученная система уравнений. И, наконец, необходимо всегда помнить, что в случае уравнения состояния идеального газа температура является абсолютной величиной, ее значение обязательно берется в Кельвинах. Если в условиях задачи температура измеряется в градусах Цельсия или в каких-либо других, то необходимо произвести перевод в градусы Кельвина.

Как уже указывалось, состояние некоторой массы газа определяется тремя термодинамическими параметрами: давлением р ,объемом V и температурой Т. Между этими параметрами существует определенная связь, называемая уравнением состояния, которое в общем виде дается выражением: Рис.7.4.

F (p , V , T )=0,

где каждая из переменных является функцией двух других.

Французский физик и инженер Б. Клапейрон вывел уравнение состояния идеального газа, объединив законы Бойля - Мариотта и Гей-Люссака. Пусть некоторая масса газа занимает объем V 1 , имеет давление р 1 и находится при температуре T 1 . Эта же масса газа в другом произвольном состоянии характеризуется параметрами р 2 , V 2 , Т 2 (рис.7.4).

Переход из состояния 1 в состояние 2осуществляется в виде двух процессов: 1) изотермического (изотерма 1 – 1 /), 2) изохорного (изохора 1 / 2).

В соответствии с законами Бойля- Мариотта (7.1) и Гей-Люссака (7.5) запишем:

р 1 V 1 =p / 1 V 2 , (7.6)

. (7.7)

Исключив из уравнений (7.6) и (7.7) p / 1 получим:

Так как состояния 1 и 2были выбраны произвольно, то для данной массы газа величина pV/T остается постоянной, т. е.

pV/T = В = const. (7.8)

Выражение (7.8) является уравнением Клапейрона , в котором В - газовая постоянная, различная для разных газов.

Д. И. Менделеев объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (7.8) к одному молю, использовав молярный объем V m . Согласно закону Авогадро, при одинаковых p и Τ моли всех газов занимают одинаковый молярный объем V m ,поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной . Уравнению

pV m = RT (7.9)

удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа , называемым также уравнением Клапейрона - Менделеева .

Числовое значение молярной газовой постоянной определим из формулы (7.9), полагая, что моль газа находится при нормальных условиях (р 0 = 1,013×10 5 Па, T 0 =273,15 К, V m =22,41×10 -3 м 3 /моль): R =8,31 Дж/(моль К).

От уравнения (7.9) для моля газа можно перейти к уравнению Клапейрона - Менделеева для произвольной массы газа. Если при некоторых заданных p и T один моль газа занимает молярный объем V m , то масса т газа займет объем V= (m/М ) V m ,где Μ молярная масса (масса одного моля вещества). Единица молярной массы – килограмм на моль (кг/моль). Уравнение Клапейрона - Менделеева для массы т газа



pV = RT = vRT ,(7.10)

где: v=m/M - количество вещества.

Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана

k=R/N A = 1,38∙10 -23 Дж/К.

Исходя из этого, уравнение состояния (2.4) запишем в виде

p= RT/V m = kN A T/V m = nkT ,

где N A /V m =n - концентрация молекул (число молекул в единице объема). Таким образом, из уравнения

p=nkT (7.11)

следует, что давление идеального газа при данной температуре прямо пропорционально концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1м 3 газа при нормальных условиях, называется числом Лошмидта:

N l = р 0 / ( 0)= 2,68∙10 25 м -3 .

Уравнение состояния идеального газа (уравнение Менделеева - Клапейрона).

До этого рассматривались газовые процессы, при которых один из параметров состояния газа оставался неизменным, а два других изменялись. Теперь рассмотрим общий случай, когда изменяются все три параметра состояния газа и получим уравнение, связывающее все эти параметры. Закон, описывающий такого рода процессы, был установлен в 1834г. Клапейроном (французский физик, с 183г. работал в Петербургском институте путей сообщения) путем объединения рассмотренных выше законов.

Пусть имеется некоторый газ массой “m”. На диаграмме (P, V) рассмотрим два его произвольных состояния, определяемых значениями параметров P 1 , V 1 , T 1 и P 2 , V 2 , T 2 . Из состояния 1 в состояние 2 будем переводить газ двумя процессами:

1. изотермического расширения (1®1¢);

2. изохорического охлаждения (1¢®2).

Первый этап процесса описывается законом Бойля-Мариотта, поэтому

Второй этап процесса описывается законом Гей-Люссака:

Исключая из этих уравнений , получим:

Поскольку состояния 1 и 2 были взяты совершенно произвольно, то можно утверждать, что для любого состояния:

где С – постоянная для данной массы газа величина.

Недостатком этого уравнения является то, что величина “C” различна для различных газов, Для устранения этого недостатка Менделеев в 1875г. несколько видоизменил закон Клапейрона, объединив его с законом Авогадро.

Запишем полученное уравнение для объема V км. одного 1 киломоля газа, обозначив постоянную буквой “R”:

Согласно закону Авогадро при одинаковых значениях P и T киломоли всех газов будут иметь одинаковые объемы V км. и, следовательно, постоянная “R” будет одинакова для всех газов.

Постоянная “R”называется универсальной газовой постоянной. Полученное уравнение связывает параметры киломоля идеального газа и, следовательно, представляет уравнение состояния идеального газа.

Значение постоянной “R” можно вычислить:

От уравнения для 1кмоль легко перейти к уравнению для любой массы газа “m”, приняв во внимание, что при одинаковых давлениях и температуре “z” киломолей газа будут занимать в ”z” раз больший объем, чем 1 кмоль. (V=z×V км.).

С другой стороны отношение , где m – масса газа, m – масса 1 кмоля, будет определять число молей газа.

Умножим обе части уравнения Клапейрона на величину , получим

Это и есть уравнение состояния идеального газа, записанное для любой массы газа.

Уравнению можно придать другой вид. Для этого введем величину

где R – универсальная газовая постоянная;

N A – число Авогадро;

Подстановка числовых значений R и N A дает следующее значение:

Умножим и разделим правую часть уравнения на N A , тогда , здесь – число молекул в массе газа “m”.

С учетом этого

Вводя величину – число молекул в единице объема, приходим к формуле:идеальной газовой шкалой температур .

Практически, по международному соглашению, в качестве термометрического тела берут водород . Установленная по водороду с использованием уравнения состояния идеального газа шкала называется эмпирической шкалой температур .