Структурно-функциональная организация ферментов. Регуляция активности ферментов. Определение амилазной активности мочи

22.09.2019

Изоферменты , или изоэнзимы – это множественные формы фермента , катализирующие одну и ту же реакцию, но отличающиеся друг от друга по физическим и химическим свойствам, в частности по сродству к субстрату, максимальной скорости катализируемой реакции (активности), электрофоретической подвижности или регуляторным свойствам.

В живой природе имеются ферменты, молекулы которых состоят из двух и более субъединиц, обладающих одинаковой или разной первичной, вторичной или третичной структурой. Субъединицы нередко называют протомерами, а объединенную олигомерную молекулу – мультимером (рис. 14.8 а-г).

Считают, что процесс олигомеризации придает субъединицам белков повышенную стабильность и устойчивость по отношению к действию денатурирующих агентов, включая нагревание, влияние протеиназ и др. Однако на нынешнем этапе знаний нельзя ответить однозначно на вопрос о существенности четвертичной структуры для каталитической активности ферментов, поскольку пока отсутствуют методы, позволяющие в «мягких» условиях разрушить лишь четвертичную структуру. Обычно применяемые методы жесткой обработки (экстремальные значения рН, высокие концентрации гуанидинхлорида или мочевины) приводят к разрушению не только четвертичной, но и вторичной, и третичной структур стабильного олигомерного фермента, протомеры которого оказываются денатурированными и, как следствие, лишенными биологической активности.

Рис. 14.8. Модели строения некоторых олигомерных ферментов: а – молекула глутаматдегидрогеназы, состоящая из 6 протомеров (336 кДа); б – молекула РНК-полимеразы; в – половина молекулы каталазы; г – молекулярный комплекс пируватдегидрогеназы

Следует указать на отсутствие ковалентных, главновалентных связей между субъединицами. Связи в основном являются нековалентными, поэтому такие ферменты довольно легко диссоциируют на протомеры. Удивительной особенностью таких ферментов является зависимость активности всего комплекса от способа упаковки отдельных субъединиц. Если генетически различимые субъединицы могут существовать более чем в одной форме, то соответственно и фермент, образованный из двух или нескольких типов субъединиц, сочетающихся в разных количественных пропорциях, может существовать в нескольких сходных, но не одинаковых формах. Подобные разновидности фермента получили название изоферментов (изоэнзимов или, реже, изозимов ).

Одним из наиболее изученных ферментов, множественность форм которого детально изучена методом гель-электрофореза, является лактатдегидрогеназа (ЛДГ), катализирующая обратимое превращение пировиноградной кислоты в молочную. Она может состоять из четырёх субъединиц двух разных Н- и М- типов (сердечный и мышечный). Активный фермент представляет собой одну из следующих комбинаций: НННН, НННМ, ННММ, НМММ, ММММ или Н 4 , Н 3 М, Н 2 М 2 , НМ 3 , М 4 . Они соответствуют изоферментам ЛДГ 1 , ЛДГ 2 , ЛДГ 3 , ЛДГ 4 , и ЛДГ 5 . При этом синтез Н- и М-типов осуществляется различными генами и в разных органах экспрессируется по-разному.

Поскольку Н-протомеры при рН 7,0-9,0 несут более выраженный отрицательный заряд, чем М-протомеры, то изофермент Н 4 при электрофорезе будет мигрировать с наибольшей скоростью в электрическом поле к положительному электроду (аноду). С наименьшей скоростью будет продвигаться к аноду изофермент М 4 , в то время как остальные изоферменты будут занимать промежуточные позиции (рис. 14.9).

Рис. 14.9. Распределение и относительное количество изоферментов ЛДГ в различных органах

Для каждой ткани в норме характерно свое соотношение форм (изоферментный спектр) ЛДГ. Например, в сердечной мышце преобладает тип Н 4 , т. е. ЛДГ 1 , а в скелетных мышцах и печени – тип М 4 , т.е. ЛДГ 5 .

Эти обстоятельства широко используют в клинической практике, поскольку изучение появления изоферментов ЛДГ (и ряда других ферментов) в сыворотке крови может представлять интерес для дифференциальной диагностики органических и функциональных поражений органов и тканей. По изменению содержания изоферментов в сыворотке крови можно судить как о топографии патологического процесса, так и о степени поражения органа или ткани.

В одних случаях субъединицы имеют почти идентичную структуру и каждая содержит каталитически активный участок (например, -галактозидаза, состоящая из четырё субъединиц). В других случаях субъединицы оказываются неидентичными. Примером последних может служить триптофансинтаза, состоящая из двух субъединиц, каждая из которых наделена собственной (но не основной) энзиматической активностью, однако, только будучи объединенными в макромолекулярную структуру, обе субъединицы проявляют триптофансинтазную активность.

Термин «множественные формы фермента » применим к белкам, катализирующим одну и ту же реакцию и встречающимся в природе в организмах одного вида. Термин «изофермент » применим только к тем множественным формам ферментов, которые появляются вследствие генетически обусловленных различий в первичной структуре белка (но не к формам, образовавшимся в результате модификации одной первичной последовательности).

Максимальной скорости катализируемой (), электрофоретической подвижности или регуляторным свойствам.

Рис. 4.5. Модели строения некоторых олигомерных .

Следует указать на отсутствие ковалентных, главновалентных связей между субъединицами. Связи в основном являются нековалентными, поэтому такие довольно легко диссоциируют на протомеры. Удивительной особенностью таких является зависимость всего комплекса от способа упаковки между собой отдельных субъединиц. Если генетически различимые субъединицы могут существовать более чем в одной форме, то соответственно и , образованный из двух или нескольких типов субъединиц, сочетающихся в разных количественных пропорциях, может существовать в нескольких сходных, но не одинаковых формах. Подобные разновидности получили название (изоэнзимов или, реже, изозимов). В частности, если состоит из 4 субъединиц двух разных типов – Н и М (сердечный и мышечный), то активный может представлять собой одну из следующих комбинаций: НННН, НННМ, ННММ, НМММ, ММММ, или Н 4 , Н 3 М, Н 2 М 2 , НМ 3 , М 4 , соответствующую ЛДГ 1 , ЛДГ 2 , ЛДГ 3 , ЛДГ 4 и ЛДГ 5 . При этом синтез Н- и М-типов осуществляется различными и в разных органах экспрессируется по-разному.

В одних случаях субъединицы имеют почти идентичную структуру и каждая содержит каталитически активный участок (например, β-галакто-зидаза, состоящая из 4 субъединиц). В других случаях субъединицы оказываются неидентичными. Примером последних может служить трипто-фансинтаза, состоящая из 2 субъединиц, каждая из которых наделена собственной (но не основной) энзиматической , однако, только будучи объединенными в макромолекулярную структуру, обе субъединицы проявляют триптофансинтазную .

Термин «множественные формы » применим к , катализирующим одну и ту же и встречающимся в природе в одного вида. Термин « » применим только к тем множественным формам , которые появляются вследствие генетически обусловленных различий в (но не к формам, образовавшимся в результате модификации одной первичной последовательности).

Одним из наиболее изученных 4 , множественность форм которого детально изучена методом гель-электрофореза, является ЛДГ, катализирующая обратимое превращение в молочную. Пять ЛДГ образуются из 4 субъединиц примерно одинакового размера, но двух разных типов. Поскольку Н-протомеры несут более выраженный отрицательный заряд при рН 7,0–9,0, чем М-про-томеры, состоящий из 4 субъединиц Н-типа (Н 4), при будет мигрировать с наибольшей скоростью в электрическом поле к положительному (). С наименьшей скоростью будет продвигаться к М 4 , в то время как остальные изо-ферменты будут занимать промежуточные позиции. Следует подчеркнуть, что

Варбург установил, что альдолазы дрожжей из различных животных тканей различаются по ряду св-в. Пепсин, трипсин, химотрипсин также различались по растворимости, рН, температурному оптимуму.

В конце пятидесятых годов биохимики Виланд и Пфлейдерер, а также другие исследователи выделяли из тканей животных чистые кристаллические препараты фермента лактатдегидрогеназы и подвергали их электрофорезу. В результате электрофореза фермент разделялся, как правило, на 5 фракций , имеющнх различную электрофоретическую подвижность. Все эти фракции обладали лактатдегидрогеназной активностью. Таким образом было установлено, что фермент лактатдегидрогеназа присутствует в тканях в виде нескольких форм. Эти формы в соответствии с их электрофоретпческой подвижностью получили обозначение ЛДГ1, ЛДГ2, ЛДГ3. ЛДГ4, ЛДГ5. (ЛДГ - сокращенное обозначекие лактатдегидрогеназы), причем номером 1 обозначают компонент с наибольшей элсктрофоретической подвижностью.

Исследования иэоферментов лактатдегидрогеназы, выделенных из разных органов животных, показали, что они различаются как по электрофоретическим и хроматографическим свойствам, так и по химическому составу, термостабильности, чувствительности к действию ингибитооров, К m и по другим свойствам. При анализах лактатдегидрогеназы разных видов животных выявлены очень большие межвидовые различия, однако в пределах данного вида распределение изоферментов характеризуется большим постоянством.

Лактатдегидрогеназа была первым ферментом, отдельные компоненты которого были подвергнуты детальзому изучению. Несколько позднее были получены данные о множественных формах и молекулярной неоднородности ряда других фермеатов, а в 1959 г. было предложено называть такие формы изоферментами или изоэнзимами. Комиссия по ферментам Международного биохимического союза официально рекомендовала этот термин для обозначевия мвожествеинь форм ферментов, того же биологического вида.

Итак , изоферменты - это группа ферментов из одного и того же источника, обладающих одним типом субстратной специфичности, катализирующих одну и ту же химическую реакцию, но различающихся по ряду физико-химических свойств .

Наличие множественных форм ферментов, или изоферментов, установлено более чем для 100 ферментов , выделеаных из различных видов животных, растений и микроорганизмов. Изоферменты не всегда состоят из двух или нескольких субъединиц. У ряда ферментов отдельные изофермсаты представляют собой разные по химическому строению белки, обладающие одной и той же каталитической активностью, но состоящие только из одной субъединицы.

Основным критерием для номенклатуры изоферментов в настоящее время принята их электрофоретическая подвижвость. Это объясняется, тем, что по сравнению с другими способами характеристики изферментов электрофорез дает наиболее высокую разрешающую способность.

К настоящему времени в результате изучения растительных изоферментов установлено, что многие ферменты присутствуют в растениях в виде множественных форм. Познакомимся с некоторыми из этих ферментов.

М а л а т д е г и д р о г е н а з а (1.1.1.37) имеет довольно сложвый изофермецтный состав. В семенах хлопчатника и листьях шпината обнаружено по 4 изофермента малатдегидрогеназы, различающихся по электрофоретической подвижности, причем молекулярная масса каждого из четырех изофермевтов шпината равнялась примерно 60 тыс. Разные растения содержат неодинаковое число изоферментов малатдегидрогеназы. Например, в семенах различных сорта к пшеницы обнаружено 7-10 изоферментов, в корнях кукурузы - 4-5, а в различных органах горе (корень, семядоли, подсемядольное и надсемядольное колено) обнаруживали 9-12 изофермевтов малатдегидрогеназы, причем число изоферментов изменялось в зависимости от фазы развития растений.

Отмечалась, что молекулярные массы изоферментоэ малатдегидрогеназы иногда существенно различались. Например, в листьях хлопчатника содержится 7 изоферментов малатдегидрогеназы, из которых 4 изофермеета являются изоформами, имеющими различный электрический заряд, но одинаковую молекулярную массу, равную примерно 60 тыс. Пятый изофермент имел молекулярную массу около 500 тыс. и был олигомером по крайней мере одной из изо форм малатдегидрогеназы с молекулярной массой 60 тыс. Так как в этих исследованиях молекулярные массы определяли приближенно, то можао полагать, что этот изофермент состоит из 8 субъединиц изофермента с молекулярной массой 60 тыс.

Устойчивость и восприимчивость растений к болезням часто связана с регуляцией синтеза изоферментов. В качестве ответной реакции на внедрение инфекции у растениий усилива интенсивность обмена вв., прежде всего окислительно-восставовительньных. Поэтому активность ОВ ферментов и число их изоферментов при поражении растений увеличиваются.

Повышевие активности и увеличение числа изоферментов пероксидазы и о-дифенолоксидазы наблюдаются при различных заболеваниях кукурузы фасоли, табака, клевера, картофелям льна, овса и других растении. На рисунке 22 схематически показано изменение числа изоферментов пероксидазы и их активности при поражении томатов фитофторой. Если в листьях здоровых растений содержалось четыре изофермента пероксидазы, то в пораженных листьях их число возрастало до девяти, причем активность всех изо ферментов значительно повышалась.

При изучении изменений в изоферментном составе пероксидазы п полифенолоксидазы митохондрий при вирусном патогенезе устойчивого и неустойчивого к вирусу табачной мозаики видов табака установлено, что вирусная инфекция вызывает качественно различные изменения изо ферментного состава разных по устойчивости видов табака. У устойчивого вида активность ряда изоферментов повышается в большей степени, чем у восприимчивого. Таким образом, в зависимости от потенциальной способности растения к биосинтезу зоферментов изменяется восприимчивость растения к инфекционным заболевакиям.

Глутаматдегидрогеназы

Эстеразы

Сахараза

Биологическая роль изоферментов в растениях.

ИФ свидетельствуют о большой лабильности ферментативного аппарата растений, дает возможность осуществлять необходимые процессы обмена вв. в клетке при изменении условий внешней среды, обеспечивает специфику обмена вв. для данного органа или ткани растений. Способствует приспособляемости растений к изменяющимся условиям вн. среды.

Одновременное присутствие в клетках множественных форм одного и того же фермента, наряду с другими механизмами регуляции, способствует согласованности процессов обмена вв. в клетке и быстрой адаптации растений к изменяющимся условиям среды.

В самом деле мы отмечали, что отдельные изоерменты различаются по температурным оптимумам, оптимумам рН, отношению к ингибиторам и другим свойствам. Отсюда следует, что если, например, резко изменяются температурные условия, которые становятся неблагоприятными для проявления каталитической активности некоторых изоферментов, то их активность подавляется. Однако данный фермеатативный процесс в растениях не прекращается полностью, так как начинают проявлять каталитическую активность другие изоферменты того же фермента, для которых данная температура является благоприятной. Если в силу каких-либо причин изменяется рН реакционной среды, то также ослабляется активность некоторых изоферментов, но вместо них начинают проявлять каталитическую активность изоферменты, имеющие иной оптимум рН. Высокие концентр ации солей подавляют активность многих ферментов, что является одной из причин ухудшения роста растений на засоленных почвах. Однако даже при высоких концентрациях солей в клетках ферментативные процессы не прекращаются полностью, так как отдельные изоферменты неодинаково относятся к повышению концентрации солей: активность одних изоферментов снижается, других повышается..

Устойчивость и восприимчивость к болезням часто основана на регуляции синтеза ИФ.

Биосинтез изоферментов определяется генетическими факторами и каждый вид растений характеризуется специфическим для данного вида набором изоферментов, т.е. проявляется видовая специфичность по изоферментному составу.

Разные органы одного растения различаются по ИФ.Изучение свойств изоферментов лактатдегидрогеназы, выделенных из различных тканей животных показало, что все изофермевты имеют приблизительно одинаковую молекулярную массу (около 140 тыс) вых условиях, например под действием обработки 42М мочевиной каждый из изоферментов диссоциирует на 4 субъедивицы с молекулярной массой около 35 тыс. Таким образом, каждый из пяти изоферментов лактатдегттдрогеназы представляет собой тетрамер. Установлено что все изоферменты лактатдегирогеназы представляют собой возможные комбинации всего лишь субъединиц двух типов, условно обозначаемых буквами А и В. Разные сочетания этих типов субъединиц образуют все пять изофермеатов лактатдегидрогеназы (рис. 18). Это показывает, что изоферменты лактатдегидрогеназы имеют строго упорядоченную структуру, причем отдельные субъединицы в молекуле этого белка-фермента соединевы водородными связями, которые могут быть разорваны под действием концентрированного раствора мочевивы.

Возникает вопрос, чем отличаются друг от друга отдельные субъединицы лактатдегидрогеаазы и с чем связава различная электрофоретическая подвижность отдельных из изоферментов? На этот вопрос сейчас получены довольно определенные ответы. Оказалось, что субъединицы А и В т- ц аминокислот. Субъединица В содержит большее количество кислых мелочных аминокислот по сравнению с субъединицей А. В связи с этим все изоферменты лактатдегидрогеназы (ЛДГ1 - ЛДГ2) различаются по количеству этих аминокислот, молекулы их имеют разную величину электрического заряда и разную электрофоретическую подвижность. Изоферменты лактатдегидрогеаазы различаются и по ряду других свойств, в частности константам Михаэлиса Км, отношению к ряду ингибиторов, термостабильности.

Ферменты, катализирующие одну и ту же химическую реакцию, но отличающиеся по первичной структуре белка, называют изофермен-тами, или изоэнзимами. Они катализируют один и тот же тип реакции с принципиально одинаковым механизмом, но отличаются друг от друга кинетическими параметрами, условиями активации, особенностями связи апофермента и кофермента.

Природа появления изоферментов разнообразна, но чаще всего обусловлена различиями в структуре генов, кодирующих эти изоферменты. Следовательно, изоферменты различаются по первичной структуре белковой молекулы и, соответственно, по физико-химическим свойствам. На различиях в физико-химических свойствах основаны методы определения изоферментов.

По своей структуре изоферменты в основном являются олигомерными белками. Причём та или иная ткань преимущественно синтезирует определённые виды протомеров. В результате определённой комбинации этих протомеров формируются ферменты с различной структурой - изомерные формы. Обнаружение определённых изоферментных форм ферментов позволяет использовать их для диагностики заболеваний.

Изоформы лактатдегидрогеназы. Фермент лак-татдегидрогеназа (ЛДГ) катализирует обратимую реакцию окисления лактата (молочной кислоты) до пирувата (пировиноградной кислоты) (см. раздел 7).

Лактатдегидрогеназа - олигомерный белок с молекулярной массой 134 000 Д, состоящий из 4 субъединиц 2 типов: М (от англ, muscle - мышца) и Н (от англ, heart - сердце). Комбинация этих субъединиц лежит в основе формирования 5 изоформ лактатдегидрогеназы (рис. 2-35, А). ЛДГ 1 и ЛДГ 2 наиболее активны в сердечной мышце и почках, ЛДГ4 и ЛДГ5 - в скелетных мышцах и печени. В остальных тканях имеются различные формы этого фермента.

    Изоформы ЛДГ отличаются электрофоретической подвижностью, что позволяет устанавливать тканевую принадлежность изоформ ЛДГ (рис. 2-35, Б).

Изоформы креатинкиназы. Креатинкиназа (КК) катализирует реакцию образования креатинфосфата:

Молекула КК - димер, состоящий из субъединиц двух типов: М (от англ, muscle - мышца) и В (от англ, brain - мозг). Из этих субъединиц образуются 3 изофермента - ВВ, MB, MM. Изофермент ВВ находится преимущественно в головном мозге, ММ - в скелетных мышцах и MB - в сердечной мышце. Изоформы КК имеют разную электрофоретическую подвижность (рис. 2-36).

Активность КК в норме не должна превышать 90 МЕ/л. Определение активности КК в плазме крови имеет диагностическое значение при инфаркте миокарда (происходит повышение уровня МВ-изоформы). Количество изоформы ММ может повышаться при травмах и повреждениях скелетных мышц. Изоформа ВВ не может проникнуть через гематоэнцефалический барьер, поэтому в крови практически не определяется даже при инсультах и диагностического значения не имеет.

Изоферменты - это ферменты, синтез которых кодируется разными генами, у них разная первичная структура и разные свойства, но они катализируют одну и ту же реакцию. Виды изоферментов:

    Органные - ферменты гликолиза в печени и мышцах.

    Клеточные - малатдегидрогеназа цитоплазматическая и митохондриальная (ферменты разные, но катализируют одну и ту же реакцию).

    Гибридные - ферменты с четвертичной структурой, образуются в результате нековалентного связывания отдельных субъединиц (лактатдегидрогеназа - 4 субъединицы 2 типов).

    Мутантные - образуются в результате единичной мутации гена.

    Аллоферменты - кодируются разными аллелями одного и того же гена.

10. I. Применение ферментов с лечебной целью в свою очередь подразде­ляется на два вида: 1) применение в целях заместительной терапии и 2) с целью воздействия фермента на очаг заболевания.

С целью заместительной терапии наиболее широко используют пищева­рительные ферменты, когда у пациента обнаруживается их недостаточ­ность. В качестве примера можно привести препараты желудочного сока или чистыйпепсин или ацидин-пепсин, который незаменим при гастритах с секреторной недостаточностью, при диспепсиях у детей. Панкреатин - препарат, представляющий смесь ферментов поджелудочной железы, приме­няют при панкреатитах, в основном хронического характера. Такое же значение имеют известные препараты холензим, панзинорм и др.

Другая область применения заместительной терапии - это лечение заболеваний, связанных с так называемымиэнзимопатиями . Это заболе­вания врожденные или наследственные, при которых нарушен синтез ка­ких-либо ферментов. Эти заболевания обычно чрезвычайно тяжелые, дети с наследственным отсутствием какого-либо фермента живут недолго, страдают тяжелыми умственными и расстройствами, отсталостью физичес­кого и умственного развития. Заместительная терапия иногда может по­мочь преодолеть эти нарушения.

Целый ряд ферментных препаратов используют в хирургической прак­тике для очистки раневой поверхности от гноя, микробов, излишков грануляционной ткани; в клинике внутренних болезней их применяют:с целью разжижения вязких секретов, экссудатов, сгустков крови, напри­мер, при тяжелых воспалительных заболеваниях легких и бронхов. это в основном ферменты - гидролазы, способные расщеплять природные биопо­лимеры - белки, НК, полисахариды. В связи с их противовоспалительным действием их применяют также при тромбофлебитах, воспалительно-дист­рофических формах пар одонтоза , остеомиелите, гайморите, отитах и др. воспалительных заболеваниях.

Среди них такие ферменты, как трипсин, химотрипсин, РНК-за, ДНК -аза, фибринолизин. Фибиринолизин также используют для удаления внутрисосудистых тромбов. РНК-азу и ДНК-азу с успехом применяют для лечения некоторых вирусных инфекций, например для уничтожения вируса герпеса.

Такие ферменты, как гиалуронидаза, коллагеназа, лидаза, исполь­зуются для борьбы с излишними рубцовыми образованиями.

Аспарагиназа - фермент, образуемый некоторыми штаммами кишечной палочки. Оказывает лечебный эффект при некоторых формах опухолей. Лечебный эффект связан со свойством фермента нарушать обмен амино­кислоты аспарагина, необходимой опухолевым клеткам для роста.

Применение ферментных препаратов с лечебной целью представляет пока еще очень молодое направление медицинской науки. Ограничением здесь является трудоемкость технологий и дороговизна получения чис­тых ферментных препаратов в кристаллическом виде, пригодном для хра­нения и применения у человека. Кроме того, при использовании фер­ментных препаратов приходится учитывать также и другие обстоятельст­ва:

1) Ферменты - это белки, а следовательно в некоторых случаях мо­гут вызвать нежелательную аллергическую реакцию.

2) Быстрым разложением введенных ферментов (белковый препарат, поэтому немедленно захватывается клетками "мусорщиками" - макрофага­ми, фибробластами и др. Отсюда, требуются большие концентрации пре­паратов, чтобы достичь нужного эффекта.

3) Однако при повышении концентрации ферментные препараты могут оказаться токсичными.

И все-таки, в тех случаях, когда удается преодолеть эти пре­пятствия, ферментные препараты оказывают прекрасный лечебный эффект.

Например, эти недостатки частично устраняются при переводе фер­ментов в так называемую "иммобилизованную" форму.

Более подробно о методах иммобилизации ферментов и способах их применения вы прочтете в ваших учебно-методических пособиях.

Изоферменты – это изофункциональные белки. Они катализируют одну и ту же реакцию, но отличаются по некоторым функциональным свойствам в силу отличий по:

Аминокислотному составу;

Электрофоретической подвижности;

Молекулярной массе;

Кинетике ферментативных реакций;

Способу регуляции;

Стабильности и др.

Изоферменты – это молекулярные формы фермента, различия в аминокислотном составе обусловлены генетическими факторами.

Примеры изоферментов: глюкокиназа и гексокиназа.

Гексокиназа может фосфорилировать любой шестичленный цикл, гексокиназа – только превращение глюкозы. После приёма пищи, богатой глюкозой, глюкокиназа начинает работать. Гексокиназа – стационарный фермент. Он катализирует реакцию расщепления глюкозы при низких её концентрациях, поступающих в организм. Отличаются по локализации (глюкокиназа – в печени, гексокиназа – в мышцах и печени), физиологическому значению, константе Михаэльса.

Если фермент – олигомерный белок, то изоформы могут получаться в результате различной комбинации протомеров. Например, лактатдегидрогеназа состоит из 4-х субъединиц. Н – субъединицы сердечного типа, М – мышечного. Может быть 5 комбинаций этих субъединиц, а, следовательно, и 5 изоферментов: НННН (ЛДГ 1 – в сердечной мышце), НННМ (ЛДГ 2), ННММ (ЛДГ 3), НМММ (ЛДГ 4), ММММ (ЛДГ 5 – в печени и мышцах). [рис. эти 4 буквы в кружочки.

Надо отличать изоферменты от множественных форм ферментов. Множественные формы ферментов – это ферменты, которые модифицированы после своего синтеза, например фосфорилаза A и B.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Белки и их биологическая роль
Белок (протеины) – protos – предшествующий всему, первичный, наиглавнейший, определяющий всё остальное. Белки – это высокомолекулярные азотсодержащие органические вещества, состо

Характеристика простых белков
В основе классификации (создана в 1908г.) лежит растворимость белков. По этому признаку выделяют: I. гистоныипротамины, растворимые в солевых растворах. О

Хромопротеины
Для них простетическая часть окрашена (chromos – краска). К хромопротеинам относятся гемоглобин, миоглобин, каталаза, пероксидаза, ряд флавинсодержащих ферментов (сукцинатдегидрогеназа, альдегидокс

Липид-белковые комплексы
Липид-белковые комплексы – сложные белки, простетическую часть которых составляют различные липидные компоненты. К таким компонентам относятся: 1. предельные и непредельные В

Нуклеопротеины
Нуклеопротеины – это сложные белки, содержащие в качестве небольшой части нуклеиновые кислоты (до 65%). НП состоят из 2-х частей: белковой (содержит гистоны и протамины, кото

Углевод-белковые комплексы
В качестве простетической группы выступают углеводы. Все углевод-белковые комплексы делятся на гликопротеины и протеогликаны. Гликопротеины (ГП)– комплекс белков с углеводными ко

Фосфопротеины
Белки, где в качестве простетической группы – фосфорная кислота. Присоединение фосфорной кислоты к полипептидной цепи идет с образованием сложноэфирной связи с АК СЕР или ТРЕ.

Строение коферментов
Коферменты в каталитических реакциях осуществляют транспорт различных групп атомов, электронов или протонов. Коферменты связываются с ферментами: - ковалентными связями; - ионными

Свойства ферментов
Общие черты ферментов и небиологических катализаторов: 1) и те, и другие катализируют только энергетически возможные реакции; 2) увеличивают скорость реакции; 3) н

Номенклатура ферментов
1) Существует тривиальная номенклатура – названия случайные, без системы и основания, например трипсин, пепсин, химотрипсин. 2) Рабочая номенклатура – название фермента составляется из наз

Современные представления о ферментативном катализе
Первая теория ферментативного катализа была выдвинута в начале 20 века Варбургом и Бейлисом. Эта теория предлагала считать, что фермент адсорбирует на себе субстрат, и называлась адсорбционной, но

Молекулярные эффекты действия ферментов
1) Эффект концентрирования – это адсорбирование на поверхности молекулы фермента молекул реагирующих веществ, т.е. субстрата, что приводит к их лучшему взаимодействию. Пр.: электростатическое притя

Теория кислотно-основного катализа
В составе активного центра фермента имеются как кислые, так и основные функциональные группы. В результате этого фермент проявляет в ходе катализа кислотно-основные свойства, т.е. играет как роль д

Регуляция активности ферментов
Ферменты являются регулируемыми катализаторами. В качестве регуляторов могут выступать метаболиты, яды. Различают: - активаторы – вещества, увеличивающие скорость реакции;

Переваривание и всасывание белков
Функции белков многообразны, но особенно выделяются структурная, каталитическая и энергетическая функции. Энергетическая ценность белка около 4,1 ккал/г. Среди всех веществ, поступающих в

Превращение белков в органах пищеварения
Все белки подвергаются действию гидролаз (третий класс ферментов), а именно пептидаз – они, как правило, вырабатываются в неактивной форме, а затем активируются путем частичного протеолиза.

Переваривание сложных белков и их катаболизм
1. Гликопротеины гидролизуются с помощью гликозидаз (амилолитических ферментов). 2. Липопротеины – с помощью липолитических ферментов. 3. Гемсодержащие хромопроте

Гниение белков и обезвреживание его продуктов
Гниение белков – это бактериальный распад белковых веществ и АК под действием микрофлоры кишечника. Идет в толстой кишке, однако может наблюдаться и в желудке – при снижении кислотнос

Метаболизм аминокислот
Фонд АК организма пополняется за счет процессов: 1) гидролиза белков пищи, 2) гидролиза тканевых белков (под действием катепсинов лизосом). Расходуется АК-фонд на процесс

Общие пути обмена веществ
1. Переаминирование (открыто в 1937 г. Браунштейном и Крицмом).

Временное обезвреживание аммиака
Аммиак токсичен (50 мг аммиака убивает кролика, при этом =0,4-0,7 мг/л). Поэтому в тканях аммиак обезвреживается временными путями: 1) в основном – образов

Орнитиновый цикл мочевинообразования
Мочевина содержит 80-90% всего азота мочи. В сутки образуется 25-30 г мочевины NH2-CO-NH2. 1. NH3 + CO

Синтез и распад нуклеотидов
Особенности обмена нуклеотидов: 1. Ни сами нуклеотиды, ни азотистые основания, поступающие с пищей, не включаются в синтез нуклеиновых кислот и нуклеотидов организма. Т.е., нуклеотиды пищи

Окисление пуриновых нуклеозидов
Аденозин® (аденозиндезаминаза, +Н2О, –NH4+) инозин® (пуриннуклеозидфосфорилаза, +Фн –рибозил-1-Ф) гипоксантин (6-оксопурин) ® (ксантинокси

Функционирование ДЦ
Субстрат·Н2 → НАД → ФМН → КоQ → 2b → 2c1→ 2c → 2a → 2a3 → O

Репликация (самоудвоение, биосинтез) ДНК
В 1953 г. Уотсон и Крик открыли принцип комплементарности (взаимодополняемости). Так, А=Т, а ГºЦ. Условия, необходимые для репликации: 1. стр

Транскрипция (передача информации с ДНК на РНК) или биосинтез РНК
При транскрипции, в отличие от репликации, информации передается с небольшого участка ДНК. Элементарной единицей транскрипции является оперон (транскриптон)- участок ДНК, подвергающийся тран

Регуляция биосинтеза белка
Клетки многоклеточного организма содержат одинаковый набор ДНК, но белки синтезируются разные. Например, соединительная ткань активно синтезирует коллаген, а в мышечных клетках такого белка нет. В

Механизмы развития раковой опухоли
Рак – генетическое заболевание, т.е. повреждение генов. Виды повреждений генов: 1) потеря гена, 2) собственно повреждение гена, 3) активация гена,

Переваривание липидов
Поступая с пищей, липиды в ротовой полости подвергаются только механической обработке. Липолитические ферменты в ротовой полости не образуются. Переваривание липидов будет происходить в тех отделах

Механизм ресинтеза жира
Ресинтез жира в стенке кишечника происходит следующим образом: 1. сначала продукты гидролиза (глицерин, ВЖК) активируются с использованием АТФ. Далее происходит последовательное ацилирован

Транспортные формы липидов в организме
Липиды являются нерастворимыми в воде соединениями, поэтому для их переноса кровью необходимы специальные переносчики, растворимые в воде. Такими транспортными формами являются липопротеины плазмы

Превращение липидов в тканях
В тканях постоянно идут процессы распада и синтеза липидов. Основную массу липидов организма человека составляют ТГ, которые в клетке имеются в виде включений. Период обновления ТГ в разных тканях

Биосинтез глицерина и ВЖК в тканях
Биосинтез глицерина в тканях тесно связан с метаболизмом глюкозы, которая в результате катаболизма проходит стадии образования триоз. Глицеральдегид–3–фосфат в цитоплазме по

Патология липидного обмена
На этапе поступления с пищей. Обильная жирная пища на фоне гиподинамии ведёт к развитию алиментарного ожирения. Нарушение обмена может быть связано с недостаточным поступлением жир

Ионы Са2+
Образуют соединение с белком - кальмодулин. Комплекс Са2+-кальмодулин активирует ферменты (аденилатциклазу, фосфодиэстеразу, Са2+-зависимую протеинкиназу). Есть группа

Гормоны паращитовидных желез
Парат-гормон, состоит из 84 АК, регулирует уровень Са2+, стимулирует выход кальция (и фосфора) из костей в кровь; Повышают реабсорбцию кальция в почках, но стимулируется выход фосфора; С

Роль витаминов в обмене веществ
1.(!) витамины – предшественники коферментов и простетических групп ферментов. Напр., В1 – тиамин – входит в состав кофермента декарбоксилаз кетокислот в виде ТПФ (ТДФ), В2 – рибофлавин –

Понятие о гиповитаминозах, авитаминозах и гипервитаминозах
Гиповитаминоз – патологическое состояние, связанное с недостатком витамина в организме. Авитаминоз – патологическое состояние, вызванное отсутствием витамина в организме.

Причины гиповитаминозов
1. Первичные: недостаток витамина в пище. 2. Вторичные: а) снижение аппетита; б) повышенный расход витаминов; в) нарушения всасывания и утилизации, напр., энтеро

Витамин А
Витамеры: А1 – ретинол и А2 – ретиналь. Клиническое название: антиксерофтальмический витамин. По химической природе: циклический непредельный одноатомный спирт на основе кольца b-

Витамин D
Антирахитический витамин. Существуют два витамера: D2 – эргокальциферол и D3 – холекальциферол. Витамин D2 содержится в грибах. Витамин D3 синтезируется в орг

Витамин Е
Устар.: антистерильный витамин, антиоксидантный энзим. В химическом плане это альфа-, бета-, гамма- и дельта-токоферолы, но преобладающим является альфа-токоферол. Витамин Е устой

Витамин К
Антигеморрагический витамин. Витамеры: К1 – филлохинон и К2 – менахинон. Роль витамина К в обмене веществ Это кофактор карбоксилирования глутамино

Витамин С
Аскорбиновая кислота, антискорбутный витамин (скорбут = цинга). Является лактоном. Легко окисляется: О=С─┐ О=С─┐ | │ | │ НО-С

Витамин В1
Тиамин, антиневритный витамин. Тиамин устойчив в кислой среде (до 140ºС), а в щелочной среде бы

Витамин В2
Рибофлавин Устойчив в кислой среде, но разрушается в нейтральной и щелочной. Легко окисляется по дво

Витамин РР
Антипеллагрический витамин. Витамеры: никотиновая к-та, никотинамид, ниацин.

Витамин В6
Антидерматитный витамин. Пиридоксин → пиридоксаль → пиридоксамин [нарисовать формулы]

Витамин В12
Кобаламин. Антианемический витамин. Имеет красный цвет. На свету разлагается. Роль кобаламина в обмене веществ - транспорт метильных групп; - участвует в

Витамин В3
Пантотеновая кислота. [рис. формулы НОСН2-С((СН3)2)-СН(ОН)-СО-NH-СН2-СН2-СООН] Состоит из масляной кислоты с b-аланином.

Гидроксилирование ксенобиотиков с участием микросомальной монооксигеназной системы
1. бензола: [рис. бензол+ О2 +НАДФН2®(гидроксилаза, цитохром Р450) фенол + НАДФ+ Н2О] 2. индола: [рис. индол+ О2 +Н

Роль печени в пигментном обмене
Пигментный обмен представляет собой совокупность сложных взаимопревращений окрашенных веществ тканей и жидкостей организма человека. К пигментам относятся 4 группы веществ: 1. гем

Биосинтез гема
Биосинтез гема идет в большинстве тканей, за исключением эритроцитов, которые не имеют митохондрий. В организме человека гем синтезируется из глицина и сукцинил-КоА, образованного в результате мета

Распад гема
Большая часть гемхромагенных пигментов в организме человека образуется при распаде гема. Главным источником гема является гемоглобин. В эритроцитах содержание гемоглобина составляет 80%, время жизн

Патология пигментного обмена
Как правило, связана с нарушением процессов катаболизма гема и выражается гипербилирубинемией и проявляется в желтушечности кожи и видимых слизистых оболочек. Накапливаясь в ЦНС, билирубин вызывает

Типы изменения биохимического состава крови
I. Абсолютные и относительные. Абсолютные обусловлены нарушением синтеза, распада, выведения того или иного соединения. Относительные обусловлены изменением объема ц

Белковый состав крови
Функции белков крови: 1. поддерживают онкотическое давление (в основном за счет альбуминов); 2. определяют вязкость плазмы крови (в основном за счет альбуминов);

Общий белок
В норме общий белок крови 65-85 г/л. Общий белок – это сумма всех белковых веществ крови. Гипопротеинемия – снижение альбуминов. Причины:

Глобулины в норме 20-30 г/л
I. α1 -глобулины α-антитрипсин – ингибирует трипсин, пепсин, эластазу, некоторые другие протеазы крови. Выполняет антивоспалитель

Остаточный азот
Остаточный азот – это сумма азота всех небелковых азотсодержащих веществ крови. В норме 14-28 ммоль/л. 1. Метаболиты: 1.1. аминокислоты (25%); 1.2. креат

Углеводный обмен
Глюкоза в капиллярной крови натощак 3,3-5,5 ммоль/л. 1. Гипергликемия (повышение глюкозы): 1.1. панкреатическая гипергликемия – при отсутствии инсул

Липидный обмен
Холестерин в норме 3-5,2 ммоль/л. В плазме находится в составе ЛПНП, ЛПОНП (атерогенные фракции) и ЛПВП (антиатерогенная фракция). Вероятность развития атеросклероза

Минеральный обмен
Натрий – это основной внеклеточный ион. На уровень Na+ в крови влияют минералокортикоиды (альдостерон задерживает натрий в почках). Уровень натрия увеличивается за счет гем

Ферменты плазмы крови
Классифицируются: 1. Функционирующие ферменты (собственно плазменные). Напр., ренин (повышает АД через ангиотензин II), холинестераза (расщепляет ацетилхолин). Их активность выше в

Физические свойства мочи здорового человека, их изменения при патологии
I. Количество мочи в норме 1,2-1,5 л. Полиурия – увеличение количества мочи из-за: 1) увеличения фильтрации (под действием адреналина увеличивается фи

Показатели химического состава мочи
Общий азот – это совокупность азота всех азотсодержащих веществ в моче. В норме – 10-16 г/сутки. При патологиях общий азот может: ü увеличиваться – гиперазотурия

Особенности обмена веществ в нервной ткани
Энергетический обмен. В ткани головного мозга увеличено клеточное дыхание (преобладают аэробные процессы). Мозг потребляет большее количество кислорода, чем постоянно работающее сер

Химическая передача нервного возбуждения
Передача возбуждения с одной клетки на другую происходит с помощью нейромедиаторов: - нейропептидов; - АК; - ацетилхолина; - биогенных аминов (адреналин,