Какие особенности суточного движения. Общие положения мореходной астрономии. Суточное движение светил в разных широтах. Нульпункт шкалы TAI сдвинут относительно нульпункта шкалы ЕТ на постоянную величину

14.08.2023

Видимое (кажущееся) вращение небесной сферы с востока на запад происходит из-за суточного вращения Земли с запада на восток. При рассмотрении видимого суточного движения светил, а также явлений, сопровождающих его, пользуются вспомогательной небесной сферой. Условно полагают Землю неподвижной. Вместо вращения Земли рассматривают кажущееся вращение небесной сферы. Если мы приняли Землю неподвижной, то для данного наблюдателя останутся неподвижными все основные линии и плоскости, которые с ним связаны. Такими линиями и плоскостями будут: отвесная линия, ось мира, плоскости горизонта, меридиана наблюдателя и первого вертикала.
Небесная сфера со всеми на ней светилами будет вращаться в сторону, противоположную вращению Земли. Звезды описывают небесные параллели, которые с горизонтом составляют угол, равный дополнению географической широты данного места до 90° т. е. 90°-φ.

Ось мира - воображаемая линия, проходящая через центр мира, вокруг которой происходит вращение небесной сферы. Ось мира пересекается с поверхностью небесной сферы в двух точках - северном полюсе мира и южном полюсе мира . Вращение небесной сферы происходит против часовой стрелки вокруг северного полюса, если смотреть на небесную сферу изнутри.

Небесный экватор - большой круг небесной сферы, плоскость которого перпендикулярна оси мира и проходит через центр небесной сферы. Небесный экватор делит небесную сферу на два полушария: северное и южное .

Круг склонения светила - большой круг небесной сферы, проходящий через полюсы мира и данное светило.

Суточная параллель - малый круг небесной сферы, плоскость которого параллельна плоскости небесного экватора. Видимые суточные движения светил совершаются по суточным параллелям. Круги склонения и суточные параллели образуют на небесной сфере координатную сетку, задающую экваториальные координаты светила.

Годовое движение Солнца

Эклиптика - большой круг небесной сферы, по которому происходит видимое годовое движение Солнца. Плоскость эклиптики пересекается с плоскостью небесного экватора под углом ε = 23°26".

Две точки, в которых эклиптика пересекается с небесным экватором, называются точками равноденствия. В точке весеннего равноденствия Солнце в своём годовом движении переходит из южного полушария небесной сферы в северное; в точке осеннего равноденствия - из северного полушария в южное. Прямая, проходящая через эти две точки, называется линией равноденствий . Две точки эклиптики, отстоящие от точек равноденствия на 90° и тем самым максимально удалённые от небесного экватора, называются точками солнцестояния. Точка летнего солнцестояния находится в северном полушарии, точка зимнего солнцестояния - в южном полушарии. Эти четыре точки обозначаются символами зодиака, соответствующими созвездиям, в которых они находились во времена Гиппарха (в результате предварения равноденствий эти точки сместились и ныне находятся в других созвездиях): весеннего равноденствия - знаком Овна (♈), осеннего равноденствия - знаком Весов (♎), зимнего солнцестояния - знаком Козерога (♑), летнего солнцестояния - знаком Рака (♋).



Ось эклиптики - диаметр небесной сферы, перпендикулярный плоскости эклиптики. Ось эклиптики пересекается с поверхностью небесной сферы в двух точках - северном полюсе эклиптики , лежащем в северном полушарии, и южном полюсе эклиптики , лежащем в южном полушарии. Северный полюс эклиптики имеет экваториальные координаты R.A. = 18h00m, Dec = +66°33", и находится в созвездии Дракона, а южный полюс - R.A. = 6h00m, Dec = −66°33" в созвездии Золотой Рыбы.

Круг эклиптической широты , или просто круг широты - большой полукруг небесной сферы, проходящий через полюсы эклиптики.

Основные измерения времени звёздные времени среднее солнце Время на различных Меридианах

Основы измерения времени

На наблюдениях суточного вращения небесного свода и годичного движения Солнца, т.е. на вращении Земли вокруг оси и на обращении Земли вокруг Солнца, основано измерение времени.

Продолжительность основной единицы времени, называемой сутками, зависит от избранной точки на небе. В астрономии за такие точки принимаются: а) точка весеннего равноденствия; б) центр видимого диска Солнца (истинное Солнце); в) «среднее солнце» - фиктивная точка , положение которой на небе может быть вычислено теоретически для любого момента времени.



Определяемые этими точками три различные единицы времени называются соответственно звездными, истинными солнечными и средними солнечными сутками , а время, ими измеряемое, - звездным, истинным солнечным и средним солнечным временем .

Тропическим годом называется промежуток времени между двумя последовательными прохождениями центра истинного Солнца через точку весеннего равноденствия.

Звездные сутки. Звездное время. Промежуток времени между двумя последовательными одноименными кульминациями точки весеннего равноденствия на одном и том же географическом меридиане называется звездными сутками.

За начало звездных суток на данном меридиане принимается момент верхней кульминации точки весеннего равноденствия.

Угол, на который Земля повернется от момента верхней кульминации точки весеннего равноденствия до какого-нибудь другого момента, равен часовому углу точки весеннего равноденствия в этот момент. Следовательно, звездное время s на данном меридиане в любой момент численно равно часовому углу точки весеннего равноденствия t , выраженному в часовой мере. Звездное время в любой момент равно прямому восхождению какого-либо светила плюс его часовой угол.

В момент верхней кульминации светила его часовой угол t = 0

В момент нижней кульминации светила его часовой угол t = 12h

Среднее солнце

в астрономии введены понятия двух фиктивных точек - среднего эклиптического и среднего экваториального солнца. Среднее эклиптическое солнце равномерно движется по эклиптике со средней скоростью Солнца и совпадает с ним около 3 января и 4 июля. в каждый момент времени прямое восхождение среднего экваториального солнца равно долготе среднего эклиптического солнца. Их же прямые восхождения одинаковы только четыре раза в году, а именно, в моменты прохождения ими точек равноденствий и в моменты прохождения средним эклиптическим солнцем точек солнцестояний. Промежуток времени между двумя последовательными одноименными кульминациями среднего экваториального солнца на одном и том же географическом меридиане называется средними солнечными сутками , или просто средними сутками. Из определения среднего экваториального солнца следует, что продолжительность средних солнечных суток равна среднему значению продолжительности истинных солнечных суток за год.

Когда светило восходит или заходит, то его z = 90°, h = 0°, а азимуты точек восхода и захода зависят от склонения светила и широты места наблюдения.

В момент верхней кульминации зенитное расстояние светила минимально, высота максимальна, а азимут А = 0 (если светило кульминирует к югу от зенита) или A = 180° (если оно кульминирует к северу от зенита).

В момент нижней кульминации зенитное расстояние светила принимает максимальное значение, высота - минимальное, а азимут А = 180° (если оно кульминирует к северу от зенита) или А = 0° (если светило кульминирует к югу от зенита).

Таким образом, горизонтальные координаты светила (z, h и A ) непрерывно изменяются вследствие суточного вращения небесной сферы, и если светило неизменно связано со сферой (т.е. его склонение d и прямое восхождение a остаются постоянными), то его горизонтальные координаты принимают свои прежние значения, когда сфера совершит один оборот.

Так как суточные параллели светил на всех широтах Земли (кроме полюсов) наклонены к горизонту, то горизонтальные координаты изменяются неравномерно даже при равномерном суточном вращении небесной сферы. Высота светила h и его зенитное расстояние z наиболее медленно меняются близ меридиана, т.е. в момент верхней или нижней кульминаций. Азимут же светила A , наоборот, в эти моменты изменяется наиболее быстро.

Часовой угол светила t (в первой экваториальной системе координат), подобно азимуту A , непрерывно меняется. В момент верхней кульминации светила его t = 0. В момент нижней кульминации часовой угол светила t = 180° или 12 h .

Но, в отличие от азимутов, часовые углы светил (если их склонения d и прямые восхождения a остаются постоянными) изменяются равномерно, так как они отсчитываются по небесному экватору, и при равномерном вращении небесной сферы изменения часовых углов пропорциональны промежуткам времени, т.е. приращения часовых углов равны углу поворота небесной сферы.

Равномерность изменения часовых углов имеет очень важное значение при измерении времени.

Высота светила h или зенитное расстояние z в моменты кульминаций зависят от склонения светила d и широты места наблюдателя j .

Рис. 1.11. Проекция небесной сферы на плоскость небесного меридиана.

Непосредственно из чертежа (рис. 1.11) следует:

1) если склонение светила M 1 d < j , то оно находится в верхней кульминации к югу от зенита на зенитном расстоянии

2) если d > j , то светило М 2 в верхней кульминации находится к северу от зенита на зенитном расстоянии



3) если (j + d) > 0, то светило М 3 находится в нижней кульминации к северу от зенита на зенитном расстоянии

или на высоте

4) если (j + d) < 0, то светило М 4 находится в нижней кульминации к югу от зенита на зенитном расстоянии

a высота над горизонтом

Из наблюдений известно, что на данной широте j каждая звезда всегда восходит (или заходит) в одной и той же точке горизонта, высота ее в меридиане также всегда одинакова. Отсюда можно заключить, что склонения звезд не меняются с течением времени (по крайней мере заметно).

Точки же восхода и захода Солнца, Луны и планет, а также их высота в меридиане в разные дни года различны. Следовательно, склонения этих светил непрерывно меняются с течением времени.

В любой точке на поверхности Земли наблюдатель всегда видит непрерывное суточное движение светил. Это движение является кажущимся и происходит вследствие действительного вращения Земли вокруг своей оси. Оно совершается с такой же угловой скоростью, как и вращение Земли, но в направлении, обратном вращению Земли, т. е. с востока на запад. При этом каждое светило движется вокруг оси мира по своей суточной параллели, плоскость которой параллельна плоскости небесного экватора. Так как взаимное расположение плоскости истинного горизонта и суточных параллелей светил меняется при перемещении наблюдателя по земной поверхности, то характер видимого суточного движения светил на различных широтах будет неодинаковым.

Уяснение видимого суточного движения светил представляет собой важный для штурмана вопрос, поскольку возможность использования светил в полете зависит от характера этого движения.

Рис. 1.19. Суточное движение светил на Северном полюсе Земли

Рис. 1.20. Суточное движение светил на экваторе Земли

На Северном полюсе Земли вертикаль наблюдателя совпадает с осью мира, а плоскость истинного горизонта - с плоскостью небесного экватора (рис. 1.19). Горизонтальная система небесных координат совпадает с экваториальной. Для наблюдателя, находящегося на Северном полюсе Земли, будут всегда видны только светила северной небесной полусферы. В течение суток видимые светила будут двигаться параллельно истинному горизонту. Следовательно, для этого частного случая высоты светил будут равны их склонениям.

На экваторе Земли плоскость небесного экватора располагается перпендикулярно к истинному горизонту и проходит через зенит (рис. 1.20). Поэтому и плоскости суточных параллелей всех светил также перпендикулярны к истинному горизонту. Для наблюдателя, расположенного на экваторе Земли, все светила будут восходить и заходить. Независимо от величины и знака склонения половину суток светила будут над горизонтом, а половину - под горизонтом.

Все светила будут двигаться перпендикулярно к плоскости истинного горизонта.

На средних широтах суточные параллели светил расположены наклонно к плоскости истинного горизонта (рис. 1.21). В зависимости от географической широты и от склонения светил одна часть суточных параллелей светил пересекает истинный горизонт в двух точках, другая целиком располагается над ним, а третья - под ним. Поэтому на средних широтах соответственно одни светила восходят и заходят, другие никогда не заходят за горизонт, а третьи - не восходят. При этом продолжительность пребывания светил над горизонтом зависит как от широты места наблюдения, так и от склонения светил. Очевидно, что в Северном полушарии чем больше склонение светила, тем большую часть суток оно находится над горизонтом.

Рис. 1.21. движение светил на средней широте

Следует заметить, что с суточным движением светил связаны такие явления, как восход, заход и кульминация светил.

В зависимости от положения суточных параллелей меняются точки восхода и захода светил на горизонте. Когда светило находится на небесном экваторе, т. е. когда его склонение равно нулю, оно восходит точно в точке востока и заходит точно в точке запада. Когда склонение светила больше нуля, его суточная параллель смещается от экватора к Северному полюсу мира, оно восходит на северо-востоке, а заходит на северо-западе.

Когда склонение светила меньше нуля, его суточная параллель смещается к Южному полюсу мира, светило восходит на юго-востоке, а заходит на юго-западе.

Условия прохождения светилом ха­рактерных точек . Изобразим сферу для наблюдателя в φN на плоскости мери­диана наблюдателя и нанесем суточные параллели светил C1-C7 (рис. 18) с различными склонениями. Из рис. 18 видно, что поло­жение параллели относительно горизон­та определяется соотношением δ и φ.

Условие восхода или захода светила. IδI < 90° - φ (35) Услови­ем прохождения светила через точку N является δN = 90° - φ ; через точку S - δs = 90° - φ.

Условия пересечения светилом надгоризонтальной части первого вертика­ла. δ<φ и одноименно с φ (36) Светило же С1 для которого δ > φ, не пересекает первый вертикал.

Условие прохождения светила через зенит. δ = Qz = φN, δ = φ и одноименно с φ (37) Через надир светило проходит при δ = φ и разноименных.

Кульминация светила . В момент верх­ней кульминации светило находится на меридиане наблюдателя, поэтому его t = 0°; А =180° (0°) и q = 0° (180°).Светило C4 (см. рис. 18) в верхней кульминации (Ск) имеет меридиональ­ную высоту H, склонение его δN, а дуга QS равна 90° - φ, поэтому формула для меридиональной высоты имеет вид: H = 90° - φ + δ (38) Решая эту формулу относительно φ, φ = Z +δ (39)

где Z. и δ приписываются их наименования; если они одноименны, то величины скла­дываются, если разноименны -­ вычита­ются.

Видимое годовое и суточное движение Солнца, его годовые периоды.

Помимо вращения вокруг оси, Земля, как и все планеты, обращается по эл­липтической (е = 0,0167) орбите вокруг Солнца (рис. 23) в направлении суточ­ного вращения, причем ее ось pnps на­клонена к плоскости орбиты на угол 66°33", сохраняющийся в процессе обра­щения (без учета возмущений). Движе­ние Земли по орбите происходит неравно­мерно Быстрее всего Земля движется в перигелии (точка П" на рис. 23), где v=30,3 км/с, который она проходит около 4 января; медленнее все­го - в афелии (точка А" на рис. 23), где v = 29.2 км/с, который она проходит около 4 июля Средняя орбитальная скорость 29,76 км/с у Земли бывает около равно­денствий (/ и ///). Орбитальное движе­ние вызывает изменение направлений на светила для наблюдателя, находя­щегося на поверхности Земли. Вследст­вие этого положения светил на сфере должны изменяться, т. е. светила, поми­мо суточного движения со сферой, долж­ны иметь еще и видимые, собственные движения по сфере

Движение Солнца по сфере, наблюдаемое с Земли в течение года, называется видимым го­довым движением Солнца ; оно происхо­дит в сторону суточного и орбитального движения Земли, т. е. является прямым движением. Из точек //, ///, IV на орбите Земли Солнце проектируется на сферу соответственно в точки ,(.. все эти точки лежат на общем большом круге сферы - эклиптике.

Эклиптикой называется большой круг небесной сферы, по которому проис­ходит видимое годовое движение Солн­ца. Плоскость этого круга совпадает (или параллельна) с плоскостью орбиты Зем­ли, поэтому эклиптика представляет про­екцию орбиты Земли на небесную сферу.

эклиптика имеет ось Р’экРэк, перпен­дикулярную плоскости орбиты Земли, полюса эклиптики: северный Рэк и южный Р’эк. Вследствие того что ось Зем­ли pnps сохраняет направление в про­странстве, угол е между осью мира РNPs и осью эклиптики РэкР’эк остается приближенно постоянным. На сфере этот угол ε называется наклоном эклиптики к экватору и равен 23°27"

Эклиптика делится экватором на две части: северную и южную. Точки пере­сечения эклиптики с экватором назы­ваются точками равноденствий: весенне­го и осеннего Когда Солнце находится в этих точках, его су­точная параллель совпадает с эквато­ром и на всем земном шаре, кроме полю­сов, день приблизительно равен ночи, отсюда и их название. солнцестояниями: летнего, (точка Рака - () и зимнего, (точка Козерога - ().

Совместное годовое и суточное движе­ние Солнца. Суточная параллель Солн­ца (рис. 24) под влиянием его годового движения непрерывно смещается на ∆δ, так что общее движение на сфере происходит по спирали; шаг ее ∆δ у равно­денствий (Овен, Весы) - наибольший, а у солнцестояний уменьшается до нуля. Поэтому параллели Солнца образуют за год на сфере пояс со склонениями 23°27"N и S. Крайние параллели, описываемые Солнцем в дни солнцестояний, называют­ся тропиками : крайний

Вопрос №20

ОБЩИЙ СЛУЧАЙ ОПРЕДЕЛЕНИЯ МЕСТА ПО ЗВЕЗДАМ .ПРАКТИЧЕСКОЕ ВЫПОЛНЕНИЕ

Предварительные операции .

Определение времени наблюдений . время начала рассчитывается по формулам:

Подбор светил для наблюдений . по глобусу или таблицам.

Условия подбора : самые яркие звезды с высотами от 10 до 73° и ∆А = 90° для двух звезд; с ∆А по 120°-для трех и с ∆А по 90°- для четырех. Подобранные звезды и их h и А записы­ваются.

Проверка приборов, получение попра­вок.

Наблюдения наблюдается по три вы­соты каждой звезды, получается навигационная информация: Тс, ол, φс, λс, ПУ (ИК), V.

Обработка наблюдений: получение Тгр, tм и δ светил; исправление высот; вычисление hс, Ас, n; прокладка линий.

Анализ обсервации : выявление ошибок.

Выбор вероятнейшего обсервованного места При двух линиях место прини­мается в пересечении линий, а его точ­ность оценивается построением эллип­са ошибок. При трех линиях , полученных по светилам в раз­ных частях горизонта, вероятнейшее место принимается в середине треуголь­ника по методу весов При четырех линиях место лучше всего выбирать по методу весов - в середине фигуры погрешностей.

Перенос счисления в обсервацию...

Теоретические основы определения широты по меридиональной высоте Солнца и Полярной звезде.

Р аздельное получение координат φ и δ места наблюдателя по высотам све­тил с достаточной точностью возможно только в частных положениях светила Широту следует определять по светилу на меридиане (А = 180°, 0°), а долготу - по светилу на первом верти­кале (А = 90°, 270°) До открытия ме­тода высотных линий координаты места в море определялись раздельно.

Определение широты по меридио­нальной высоте светила. Если светило находится в верхней кульминации (рис 154), то его высота является мери­диональной H, азимут А = 180°(0°), tм = 0° Уравнение круга равных высот (209), т е формула sin h, примет вид

sinH = sinφsinδ + cosφcosδcos0° или sinH = cos(φ-δ)

Так как H = 90 - Z , то sinH= cosZ = cos (φ -δ ) и для аргумен­тов в первой четверти Z = φ-δ , откуда φ = Z+δ

Эта формула применяется для опре­деления φ в момент верхней кульмина­ции светила, причем δ имеет знак «+» при одноименных φ и δ и знак «-» - при разноименных

Наименование Z об­ратно H, а H одноименно с точкой гори­зонта (N или S), над которой измеряет­ся высота Наименование широты полу­чается одинаковым с наименованием большего члена формулы В общем виде получим φ = Z ± δ (284)

Формулу (284) для разных положе­ний светил можно получить и по сфере (см рис 154) Для светила С1, у кото­рого δ одноименно с φ, имеем Z1 = 90 – H1 φ = Z1+δ1

Для светила С2, у которого δ разно­именно с φ, имеем φ = Z2-δ2

Для светила Сз, у которого δ одно­именно с φ и больше ее имеем φ = δ3-Z3

Для нижней кульминации светила С"3 получим φ = H’ + ∆ (285)

где ∆ - полярное расстояние светила, рав­ное 90-δ

Суточное движение светил

Все светила перемещаются по небу, совершая один оборот за сутки. Связано это с вращением Земли. Однако двигаются они по-разному. Для наблюдателя, находящегося на Северном полюсе, над горизонтом находятся звезды только северного полушария неба. Они вращаются вокруг Полярной звезды и не заходят за горизонт. Наблюдатель, находящийся на Южном полюсе, видит только звезды южного полушария. На экваторе могут наблюдаться все звезды, расположенные и в северном, и в южном полушариях неба.

Звезды бывают заходящими и восходящими на данной широте места наблюдения, а также невосходящими и незаходящими. Например, в России не видны звезды созвездия Южный Крест - это созвездие, на наших широтах невосходящее. А созвездия Дракона, Малой Медведицы - незаходящие созвездия. Прохождение светила через меридиан называется кульминацией. В верхней кульминации высота светила h максимальна, в нижней кульминации - минимальна. Промежуток между кульминациями светил равен 12 часам (половине суток).

Верхняя и нижняя кульминации светил

Высота светил в верхней кульминации h = 90° - ц + д. Высота светил в нижней кульминации h = ц + д - 90°. Солнце, как и всякое другое светило, каждый день поднимается из-за горизонта в восточной стороне неба и заходит на западе. В полдень по местному времени оно достигает наибольшей высоты; нижняя кульминация случается в полночь. В полярных областях Солнце летом не заходит за горизонт, и его нижнюю кульминацию можно наблюдать. В средних широтах на протяжении года видимый суточный путь Солнца то сокращается, то увеличивается. Наименьшим он будет в день зимнего солнцестояния (приблизительно 22 декабря), наибольшим - в день летнего солнцестояния (приблизительно 22 июня). В дни весеннего и осеннего равноденствий (соответственно 21 марта и 23 сентября) продолжительность дня равна продолжительности ночи, т.к. Солнце находится на небесном экваторе: оно восходит в точке востока и заходит в точке запада.