Использование формулы менделеева клапейрона в двигателях автомобиля. Клапейрона уравнение

16.10.2019

Клапейрона - Менделеева уравнение, найденная Б. П. Э. Клапейроном (1834) зависимость между физическими величинами, определяющими состояние идеального газа: давлением газа р, его объёмом V и абсолютной температурой Т.

К. у. записывается в виде pV = ВТ, где коэффициент пропорциональности В зависит от массы газа. Д. И. Менделеев, используя Авогадро закон, вывел в 1874 уравнение состояния для 1 моля идеального газа pV = RT, где R - универсальная Газовая постоянная. Для газа, имеющего общую массу М и молекулярную массу (См. Молекулярная масса) μ,

, или pV=NkT,"

где N - число частиц газа, k - Больцмана постоянная. К. у. представляет собой Уравнение состояния, идеального газа, которое объединяет Бойля - Мариотта закон (зависимость между р и V при Т = const), Гей-Люссака закон (См. Гей-Люссака законы) (зависимость V от Т при р = const) и Авогадро закон (согласно этому закону, газы при одинаковых значениях р, V и Т содержат одинаковое число молекул N ).

К. у. - наиболее простое уравнение состояния, применимое с определённой степенью точности к реальным газам при низких давлениях и высоких температурах (например, атмосферный воздух, продукты сгорания в газовых двигателях и др.), когда они близки по своим свойствам к идеальному газу (См. Идеальный газ).

  • - выражает связь наклона кривой равновесия двух фаз с теплотой фазового перехода и изменением фазового объёма...

    Физическая энциклопедия

  • - термодинамич. ур-ние, относящееся к процессам перехода в-ва из одной фазы в другую...

    Физическая энциклопедия

  • - аналитическая запись задачи о разыскании значений аргументов, при к-рых значения двух данных функций равны...

    Математическая энциклопедия

  • - математическое утверждение, справедливое для некоторого подмножества всех возможных значений переменной величины. Например, уравнение вида х2=8-2х верно только для определенных значений х...

    Научно-технический энциклопедический словарь

  • - Требование того, чтобы математическое выражение принимало определенное значение. Например, квадратное уравнение записывается в виде: ах2+bх+с=0...

    Экономический словарь

  • - КЛАПЕЙРОНА уравнение, зависимость между давлением p, абсолютной температурой T и объемом V идеального газа массы M: pV=BT, где B=M/m . Установлена французским ученым Б.П.Э. Клапейроном в 1834...

    Современная энциклопедия

  • - устанавливает связь между изменениями равновесных значений темп-ры Т и давления р однокомпонентной системы при фазовых переходах первого рода...
  • - найденная Б.П.Э. Клапейроном зависимость между физ. величинами, определяющими состояние идеального газа: pV = BT, где коэф. В зависит от массы газа М и его мол. массы...

    Естествознание. Энциклопедический словарь

  • - матем. запись задачи о разыскании значений аргументов, при к-рых значения двух данных функций равны...

    Естествознание. Энциклопедический словарь

  • - дифференц. ур-ние, устанавливающее связь между давлением р и термодинамич. темп-рой Т чистого в-ва в состояниях, соответствующих фазовому переходу первого рода...
  • - Клапейрона - Менделеева уравнение, - ур-ние состояния идеального газа: pVm =RT, где р - давление, Т - термодинамическая температура газа, Vm - молярный объём газа, R - газовая постоянная...

    Большой энциклопедический политехнический словарь

  • - Соединение данных чисел при помощи знаков различных действий наз. алгебраическим выражением. Напр. /3. Если выполнить указанные действия, то в результате получим 5...

    Энциклопедический словарь Брокгауза и Евфрона

  • - термодинамическое уравнение, относящееся к процессам перехода вещества из одной фазы в другую...
  • - Клапейрона - Менделеева уравнение, найденная Б. П. Э. Клапейроном зависимость между физическими величинами, определяющими состояние идеального газа: давлением газа р, его объёмом V и абсолютной...

    Большая Советская энциклопедия

  • - в математике, аналитическая запись задачи о разыскании значений аргументов, при которых значения двух данных функций равны...

    Большая Советская энциклопедия

  • - математическая запись задачи о разыскании значений аргументов, при которых значения двух данных функций равны...

    Большой энциклопедический словарь

"Клапейрона уравнение" в книгах

Уравнение теплопроводности

Из книги Истории давние и недавние автора Арнольд Владимир Игоревич

Уравнение теплопроводности Провалился под лёд я без лыж в первые дни мая, переходя по льду входящее теперь в черту Москвы стометровое озеро «Миру - мир». Началось с того, что лёд подо мной стал слегка прогибаться, и под кедами показалась вода. Вскоре я понял, что форма льда

Узор «Уравнение»

Из книги Обувь для дома своими руками автора Захаренко Ольга Викторовна

Узор «Уравнение» Этот узор вяжется так:1-й и 13-й ряд: *2 п. светлой нити, 2 п. темной нити, 1 п. светлой нити, 1 п. темной нити, 3 п. светлой нити, 1 п. темной нити, 1 п. светлой нити, 2 п. темной нити, 1 п. светлой нити*, повторите от * до *; Узор «Уравнение»2-й и все четные ряды: выполняйте все

Уравнение Дюпона

Из книги МВА за 10 дней. Самое важное из программ ведущих бизнес-школ мира автора Силбигер Стивен

Уравнение Дюпона Ученые имеют привычку давать простым концепциям импозантные названия. Ваш словарь МВА будет неполон без «уравнения Дюпона». Эта диаграмма показывает, как соотносятся между собой некоторые наиболее важные аналитические коэффициенты, при этом

Уравнение миллионера

Из книги Миллионер за минуту. Прямой путь к богатству автора Хансен Марк Виктор

Уравнение миллионера Каждые 60 секунд кто-нибудь в мире становится миллионером.Именно так. Новый миллионер «возникает» каждую минуту каждого дня. В мире буквально миллионы миллионеров.Некоторым из этих миллионеров понадобилось 60 лет, чтобы накопить свое богатство.

Уравнение Шредингера; уравнение Дирака

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Уравнение Шредингера; уравнение Дирака Выше в этой главе я уже упоминал об уравнении Шредингера, которое является хорошо определенным детерминистским уравнением, во многих отношениях аналогичным уравнениям классической физики. Правила гласят, что до тех пор, пока над

25. Уравнение профессора

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

25. Уравнение профессора В «Интерстеллар» гравитационные аномалии волнуют профессора Брэнда по двум причинам. Если он поймет их природу, это может привести к революционному скачку в наших познаниях о гравитации, к скачку столь же грандиозному, как эйнштейновская

Клапейрона уравнения

Из книги Энциклопедический словарь (К) автора Брокгауз Ф. А.

Клапейрона уравнения Клапейрона уравнения или формулы – выражают зависимость между моментами, действующими в трех последовательных опорных точках неразрезного бруса, т. е. непрерывной балки, поддерживаемой более чем двумя опорами. Уравнений этих можно составить

Аррениуса уравнение

Из книги Большая Советская Энциклопедия (АР) автора БСЭ Клапейрона уравнение Из книги Большая Советская Энциклопедия (КЛ) автора БСЭ

Уравнение

Из книги Большая Советская Энциклопедия (УР) автора БСЭ

Каждый школьник, учащийся в десятом классе, на одном из уроков физики изучает закон Клапейрона-Менделеева, его формулу, формулировку, учится применению при решении задач. В технических университетах эта тема тоже входит в курс лекций и практических работ, причем в нескольких дисциплинах, а не только на физике. Закон Клапейрона-Менделеева активно используется в термодинамике при составлении уравнений состояния идеально газа.

Термодинамика, термодинамические состояния и процессы

Термодинамика представляет собой раздел физики, который посвящен изучению общих свойств тел и тепловых явлений в этих телах без учета их молекулярного строения. Давление, объем и температура являются основными величинами, учитывающимися при описании тепловых процессов в телах. Термодинамическим процессом называется изменение состояния системы, т. е. изменение ее основных величин (давление, объем, температура). В зависимости от того, происходят ли изменения основных величин, системы бывают равновесными и неравновесными. Процессы тепловые (термодинамические) можно так классифицировать. То есть если система переходит из одного равновесного состояния в другое, то такие процессы называются, соответственно, равновесными. Неравновесные процессы, в свою очередь, характеризуются переходами неравновесных состояний, то есть основные величины претерпевают изменения. Однако можно их (процессы) разделить на обратимые (возможен обратный переход через те же состояния) и необратимые. Все состояния системы можно описать определенными уравнениями. Для упрощения расчетов в термодинамике вводится такое понятие, как идеальный газ - некая абстракция, которая характеризуется отсутствием взаимодействия на расстоянии между молекулами, размерами которых можно пренебречь ввиду их малого размера. Основные газовые законы и уравнение Менделеева-Клапейрона тесно взаимосвязаны - все законы вытекают из уравнения. Они описывают изопроцессы в системах, то есть такие процессы, в результате которых один из основных параметров остается неизменным (изохорный процесс - не изменяется объем, изотермический - постоянна температура, изобарный - происходит изменение температуры и объема при постоянстве давления). Закон Клапейрона-Менделеева стоит разобрать подробнее.


Уравнение состояния идеального газа

Закон Клапейрона-Менделеева выражает зависимость между давлением, объемом, температурой, количеством вещества именно идеального газа. Можно так же выразить зависимость только между основными параметрами, то есть абсолютной температурой, молярным объемом и давлением. Суть не изменяется, так как молярный объем равен отношению объема к количеству вещества.

Закон Менделеева-Клапейрона: формула

Уравнение состояния идеального газа записывается в виде произведения давления на молярный объем, приравненного к произведению универсальной газовой постоянной и абсолютной температуры. Универсальная газовая постоянная - коэффициент пропорциональности, константа (неизменная величина), выражающая работу расширения моля в процессе увеличения значения температуры на 1 Кельвин в условиях изобарного процесса. Ее величина составляет (приблизительно) 8,314 Дж/(моль*К). Если выразить молярный объем, то получится уравнение вида: р*V=(m/М)*R*Т. Или можно привести к виду: р=nkT, где n - концентрация атомов, к - постоянная Больцмана (R/NА).

Решение задач


Закон Менделеева-Клапейрона, решение задач с его помощью значительно облегчают расчетную часть при проектировании оборудования. Закон при решении задач применяется в двух случаях: задано одно состояние газа и его масса и при неизвестности величины массы газа известен факт ее изменения. Необходимо учитывать, что в случае многокомпонентных систем (смеси газов) записывается уравнение состояния для каждого компонента, т. е. для каждого газа в отдельности. Для установления связи между давлением смеси и давлениями компонентов используется закон Дальтона. Также стоит помнить, что для каждого состояния газа описывается отдельным уравнением, далее решается уже полученная система уравнений. И, наконец, необходимо всегда помнить, что в случае уравнения состояния идеального газа температура является абсолютной величиной, ее значение обязательно берется в Кельвинах. Если в условиях задачи температура измеряется в градусах Цельсия или в каких-либо других, то необходимо произвести перевод в градусы Кельвина.

1. Идеальным газом называется газ, в котором отсутствуют силы межмолекулярного взаимодействия. С достаточной степенью точности газы можно считать идеальными в тех случаях, когда рассматриваются их состояния, далекие от областей фазовых превращений.
2. Для идеальных газов справедливы следующие законы:

а) Закон Бойля - Mаpuomma: при неизменных температуре и массе произведение численных значений давления и объема газа постоянно:
pV = const

Графически этот закон в координатах РV изображается линией, называемой изотермой (рис.1).

б) Закон Гей-Люссака: при постоянном давлении объем данной массы газа прямо пропорционален его абсолютной температуре:
V = V0(1 + at)

где V - объем газа при температуре t, °С; V0 - его объем при 0°С. Величина a называется температурным коэффициентом объемного расширения. Для всех газов a = (1/273°С-1). Следовательно,
V = V0(1 +(1/273)t)

Графически зависимость объема от температуры изображается прямой линией - изобарой (рис. 2). При очень низких температурах (близких к -273°С) закон Гей-Люссака не выполняется, поэтому сплошная линия на графике заменена пунктиром.

в) Закон Шарля: при постоянном объеме давление данной массы газа прямо пропорционально его абсолютной температуре:
p = p0(1+gt)

где р0 - давление газа при температуре t = 273,15 К.
Величина g называется температурным коэффициентом давления. Ее значение не зависит от природы газа; для всех газов = 1/273 °С-1. Таким образом,
p = p0(1 +(1/273)t)

Графическая зависимость давления от температуры изображается прямой линией - изохорой (Рис. 3).

г) Закон Авогадро: при одинаковых давлениях и одинаковых температурах и равных объемах различных идеальных газов содержится одинаковое число молекул; или, что то же самое: при одинаковых давлениях и одинаковых температурах грамм-молекулы различных идеальных газов занимают одинаковые объемы.
Так, например, при нормальных условиях (t = 0°C и p = 1 атм = 760 мм рт. ст.) грамм-молекулы всех идеальных газов занимают объем Vm = 22,414 л.· Число молекул, находящихся в 1 см3 идеального газа при нормальных условиях, называется числом Лошмидта; оно равно 2,687*1019> 1/см3
3. Уравнение состояния идеального газа имеет вид:
pVm = RT

где р, Vm и Т - давление, молярный объем и абсолютная температура газа, а R - универсальная газовая постоянная, численно равная работе, совершаемой 1 молем идеального газа при изобарном нагревании на один градус:
R = 8.31*103 Дж/(кмоль*град)

Для произвольной массы M газа объем составит V = (M/m)*Vm и уравнение состояния имеет вид:
pV = (M/m) RT

Это уравнение называется уравнением Менделеева - Клапейрона.
4. Из уравнения Менделеева - Клапейрона следует, чти число n0 молекул, содержащихся в единице объема идеального газа, равно
n0 = NA/Vm = p*NA /(R*T) = p/(kT)

где k = R/NA = 1/38*1023 Дж/град - постоянная Больцмана, NA - число Авогадро.

Для объяснения свойств вещества в газообразном состоянии используется модель идеального газа.

Идеальным газом называют газ, для которого можно пренебречь размерами молекул и силами молекулярного взаимодействия; соударения молекул в таком газе происходят по закону соударения упругих шаров.

Реальные газы ведут себя подобно идеальному, когда среднее рас­стояние между молекулами во много раз больше их размеров, т. е. при достаточно больших разрежениях.

Состояние газа описывается тремя параметрами V, Р, Т, между которыми существует однозначное соотношение, называемое уравнением Менделеева -Клапейрона.

R - молярная газовая постоянная, определяет рабо­ту, которую совершает 1 моль газа при изобарном нагревании его на 1 К.

Такое название этого уравнения обусловлено, тем, что впервые оно было получено Д.И. Менделеевым (1874г) на основе обобщения результатов, полученных до этого французским учёным Б.П. Клапейроном.

Из уравнения состояния идеального газа вытекает ряд важных следствий:

    При одинаковых температурах и давлениях в равных объёмах любых идеальных газов, содержится одинаковое количество молекул (закон Авагадро).

    Давление смеси химически невзаимодействующих идеальных газов равно сумме парциальных давлений этих газов (закон Дальтона ).

    Отношение произведения давления и объёма идеального газа к его абсолютной температуре есть величина постоянная для данной массы данного газа (объединенный газовый закон)

Всякое изме­нение состояния газа называют термодинамическим процессом.

При переходе данной массы газа из одного состояния в другое в общем случае могут меняться все параметры газа: объём, давление и температура. Однако, иногда меняются какие-либо два из этих параметров, а третий остаётся неизменным. Процессы, при котором один из параметров состояния газа остаётся постоянным, а два других изменяются, называют изопроцессами .

§ 9.2.1 Изотермический процесс (Т= const ). Закон Бойля-Мариотта .

Процесс, протекающий в газе, при котором температура остается постоянной, называютизотермическим («изос»- «одинаковый»; «терме» - «тепло»).

Практически этот процесс можно реализовать, медленно уменьшая или увеличивая объём газа. При медленном сжатии и расширении создаются условия поддержания постоянной температуры газа вследствие теплообмена с окружающей средой.

Если при постоянной температуре увеличивать объём V, давление Р уменьшается, когда объём V уменьшается - давление Р растёт, а произведение Р на V сохраняется.

рV = соnst (9.11)

Этот закон называется законом Бойля – Мариотта , так как почти одновременно был открыт в XVII в. французским ученым Э. Мариоттом и английским ученым Р. Бойлем.

Закон Бойля-Мариотта формулируется так: произведение давления газа на объем для данной массы газа есть величина постоянная:

Графическая зависимость давления газа Р от объёма V изображается в виде кривой (гиперболы), которая носит название изотермы (рис.9.8). Разным температурам соответствуют разные изотермы. Изотерма, соответствующая более высокой температуре, лежит выше изотермы, соответствующей более низкой температуре. А в координатах VT (объём – температура) и PT (давление – температура) изотермы являются прямыми линиями, перпендикулярными оси температур (рис.).

§ 9.2.2 Изобарный процесс (P = const ). Закон Гей-Люссака

Процесс, протекающий в га­зе, при котором давление остается постоянным, называют изобарным («барос» - «тяжесть»). Простейшим примером изобарного процесса является расширение нагреваемого газа в цилиндре со свободным поршнем. Наблюдаемое при этом расширение газа называют тепловым расширением .

Опыты, проведенные в 1802 году французским физи­ком и химиком Гей-Люссаком показали, Объем газа данной массы при постоянном давлении л инейно возрастает с увеличением температуры (закон Гей-Люссака) :

V = V 0 (1 + αt) (9.12)

Вели­чина α называется температурным коэффициентом объемного расши­рения (для всех газов
)

Если заменить температуру, отсчитанную по шкале Цельсия, термодинамической температурой получим закон Гей-Люссака в следующей формулировки: при неизменном давлении отношение объёма дано массы идеального газа к его абсолютной температуре является величиной постоянной, т.е.

Графически эта зависимость в координатах Vt изображается в виде прямой, выходящей из точки t=-273°С. Эту прямую называют изобарой (рис. 9.9). Разным давлениям соответствуют разные изобары. Поскольку при постоянной температуре с увеличением давления объём газа уменьшается, то изобара, соответствующая более высокому давлению, лежит ниже изобары, соответствующеё более низкому давлению. В координатах PV и PT изобары это прямые линии, перпендикулярные оси давления. В области низких температур близ­кой к температуре сжижения (конденсации) газов закон Гей-Люссака не выполняется, поэтому красная линия на графике заменена белой.

§ 9. 2. 3 Изохорный процесс (V = const ). Закон Шарля

Процесс, протекающий в газе, при котором объем остается постоянным, называют изохорным («хорема» - вместимость). Для осуществления изохорного процесса газ помещают в герметический сосуд, не меняющий свой объём

Французский физик Ж. Шарль установил:давление газа данной массы при постоянном объеме возрастает линейно с увеличе­нием температуры (закон Шарля):

Р = Р 0 (1 + γt) (9.14)

(р - давление газа при температуре t,°С; р 0 - его давление при 0°С].

Величина γ называется температурным коэффициентом давления . Ее значение не зависит от природы газа: для всех газов
.

Если заменить температуру, отсчитанную по шкале Цельсия, термодинамической температурой получим закон Шарля в следующей формулировки: при неизменном объёме отношение давления данной массы идеального газа к его абсолютной температуре является величиной постоянной, т.е.

Графически эта зависимость в координатах Рt изображается в виде прямой, выходящей из точки t=-273°С. Эту прямую называют изохорой (рис. 9.10). Разным объёмам соответствуют разные изохоры. Поскольку с увеличением объёма газа при постоянной температуре давление его уменьшается, то изохора, соответствующая большему объёму, лежит ниже изохоры, соответствующей меньшему объёму. В координатах PV и VT изохоры – это прямые линии, которые перпендикулярны оси объёма. В области низких температур близ­кой к температуре сжижения (конденсации) газов закон Шарля, также как и закон Гей-Люссака не выполняется.

За единицу температуры по термодинамической шкале принят кельвин (К); соответствует 1°С.

Температура, отсчитанная по термодинамической шкале температур называется термодинамической температурой . Так как точка плавления льда при нормальном атмосферном давлении, при­нятая за 0°С, равна 273,16 К -1 , то

Берём формулу и подставляем в неё . Получаем:

p = nkT.

Вспомним теперь, что A , где ν - число молей газа:

,

pV = νRT. (3)

Соотношение (3) называется уравнением Менделеева - Клапейрона . Оно даёт взаимосвязь трёх важнейших макроскопических параметров, описывающих состояние идеального газа - давления, объёма и температуры. Поэтому уравнение Менделеева - Клапейрона называется ещё уравнением состояния идеального газа .

Учитывая, что , где m - масса газа, получим другую форму уравнения Менделеева - Клапейрона:

(4)

Есть ещё один полезный вариант этого уравнения. Поделим обе части на V :

Но - плотность газа. Отсюда

(5)

В задачах по физике активно используются все три формы записи (3)-(5).

Изопроцессы

На протяжении этого раздела мы будем придерживаться следующего предположения: масса и химический состав газа остаются неизменными . Иными словами, мы считаем, что:

m = const, то есть нет утечки газа из сосуда или, наоборот, притока газа в сосуд;

µ = const, то есть частицы газа не испытывают каких-либо изменений (скажем, отсутствует диссоциация - распад молекул на атомы).

Эти два условия выполняются в очень многих физически интересных ситуациях (например, в простых моделях тепловых двигателей) и потому вполне заслуживают отдельного рассмотрения.

Если масса газа и его молярная масса фиксированы, то состояние газа определяется тремя макроскопическими параметрами: давлением , объёмом и температурой . Эти параметры связаны друг с другом уравнением состояния (уравнением Менделеева - Клапейрона).

Термодинамический процесс

Термодинамический процесс (или просто процесс ) - это изменение состояния газа с течением времени. В ходе термодинамического процесса меняются значения макроскопических параметров - давления, объёма и температуры.

Особый интерес представляют изопроцессы - термодинамические процессы, в которых значение одного из макроскопических параметров остаётся неизменным. Поочерёдно фиксируя каждый из трёх параметров, мы получим три вида изопроцессов.

1. Изотермический процесс идёт при постоянной температуре газа: T = const.

2. Изобарный процесс идёт при постоянном давлении газа: p = const.

3. Изохорный процесс идёт при постоянном объёме газа: V = const.

Изопроцессы описываются очень простыми законами Бойля - Мариотта, Гей-Люссака и Шарля. Давайте перейдём к их изучению.

Изотермический процесс

При изотермическом процессе температура газа постоянна. В ходе процесса меняются только давление газа и его объём.



Установим связь между давлением p и объёмом V газа в изотермическом процессе. Пусть температура газа равна T . Рассмотрим два произвольных состояния газа: в одном из них значения макроскопических параметров равны p 1 ,V 1 ,T , а во втором - p 2 ,V 2 ,T . Эти значения связаны уравнением Менделеева - Клапейрона:

Как мы сказали с самого начала, масса газа m и его молярная масса µ предполагаются неизменными. Поэтому правые части выписанных уравнений равны. Следовательно, равны и левые части: p 1V 1 = p 2V 2.

Поскольку два состояния газа были выбраны произвольно, мы можем заключить, что в ходе изотермического процесса произведение давления газа на его объём остаётся постоянным :

pV = const.

Данное утверждение называется законом Бойля - Мариотта . Записав закон Бойля - Мариотта в виде

p = ,

можно дать и такую формулировку: в изотермическом процессе давление газа обратно пропорционально его объёму . Если, например, при изотермическом расширении газа его объём увеличивается в три раза, то давление газа при этом в три раза уменьшается.

Как объяснить обратную зависимость давления от объёма с физической точки зрения? При постоянной температуре остаётся неизменной средняя кинетическая энергия молекул газа, то есть, попросту говоря, не меняется сила ударов молекул о стенки сосуда. При увеличении объёма концентрация молекул уменьшается, и соответственно уменьшается число ударов молекул в единицу времени на единицу площади стенки - давление газа падает. Наоборот, при уменьшении объёма концентрация молекул возрастает, их удары сыпятся чаще и давление газа увеличивается.